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Abstract—Electricity demand forecast plays a major role in the
planning and resource allocation phase of utility companies. In
particular, predicted peak and valley (PaV) demand points seems
critical, as they determine the maximum required generation
capacity and baseload to meet the minimum underlying demand,
respectively. In this paper, we propose multiple techniques to
enhance day-ahead forecasting models by leveraging independent
daily PaV predictors to ensemble short-term electricity demand
forecasters. These ensemble techniques are then incorporated
into a novel ensemble recommendation system (ERS). The ERS
suggests the most appropriate ensemble technique to enhance
the day-ahead predictor’s performance while minimizing the
computation required for testing multiple ensemble algorithms,
relative to a single ensemble algorithm. This approach aims
to improve the PaV forecasting and to enhance the overall
accuracy of the day-ahead forecaster and it can be used with
any combination of forecasting models. We demonstrate the
effectiveness of our approach through a case study using a time-
series prediction database model (tspDB) and a deep neural
network (DNN) model for predicting the demand of the next day.
The results show an improvement of 33% and 12% in the mean
absolute percentage error of the forecasted PaV points using the
tspDB and DNN models, respectively, as well as, enhancement in
the overall day-ahead forecast.

Index Terms—Electricity Demand Forecasting, Peak and Valley
Ensemble, Ensemble Recommendation System.

I. INTRODUCTION

For electric power system operators worldwide, predicting
electricity demand is an essential procedure in the dispatching
process before delivering electrical energy to the consumers.
Therefore, electricity demand forecasting (EDF) has attracted
significant attention in the field of time-series forecasting.
For any given load profile, the optimal sequence of generator
units to be committed and the energy they should dispatch
are calculated using unit commitment and economic dispatch
(UCED) algorithms [1, 2]. The accuracy of the optimal so-
lution generated from the UCED algorithms depends highly
on the accuracy of the forecasted demand. Overestimating or
underestimating the load could cost millions of dollars per
year or may compromise the grid security, which reveals the
importance of having an accurate EDF model. Although recent
advancements in machine-learning algorithms have enabled

EDF models to achieve high accuracy levels, researchers are
continually exploring new methods to enhance the predictive
ability of these models (e.g., see [3, 4]), as small accuracy
enhancements can lead to large savings for utility companies.

Amidst all the points in a given load profile time-series, the
peak and valley (PaV) points have received special consider-
ation in the power systems field [5, 6]. Errors in forecasting
the peak point may cause more technical and economic losses
than errors in other points of the day as, in general, with higher
demand, more expensive and less efficient generators are used
to meet the demand. Conversely, the valley point of the load
profile dictates the baseload, which is an essential piece of
information. The baseload specifies the energy that will be
consumed at all times of the day, and the utility company can
assign highly efficient generators with low ramping rates to
supply this static load.

The criticality of the PaV points extends even further. If the
PaV points are predicted efficiently, their predicted values can
be used to enhance the accuracy of the forecasted load profile.
Researchers have presented methodologies for ensembling a
prediction of a day-ahead profile with a prediction of the PaV
points to produce an improved approximation of the actual
load profile (e.g., see [7, 8, 9]). However, the approach to select
a suitable ensembling technique to maximize the enhancement
of the next-day load prediction has not been examined in the
literature. Further, in the reported results, the accuracy of the
algorithms is determined by calculating the final forecasting
error after applying the ensemble methodology. However, this
error is dependent on the accuracy of the PaV prediction
model, and thus it does not single out the performance of
the method. Therefore, a performance evaluation method that
is independent of the PaV models is required.

In this work, we examine various techniques to enhance
next-day predictions using independent PaV point predictors
and propose in detail a method for evaluating the performance
of these techniques. The methodology can be considered as
an ensemble recommendation system (ERS) that aids in the
evaluation of different ensemble techniques and selects the
most fitting one for the case in question.
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Contributions. Our major contributions are as follows:
1) We developed two ensemble algorithms that enhance the

predictions of PaV points and the hours close to these
points.

2) We proposed a methodology for measuring the perfor-
mance of the ensemble algorithms irrespective of the
performance of the PaV prediction models.

3) We constructed an ERS that suggests the best-suited
ensemble algorithm depending on the accuracy of the
PaV predictors.

4) We demonstrated the effectiveness of the proposed
model on a real-world use case of forecasting the
next-day electricity demand for a large utility company
covering a population of over 30 million people.

Roadmap. The remainder of this paper is organized as
follows: First, the dataset and models used in Section II
are discussed. Section III describes in detail the ensemble
techniques. Thereafter, a case study in which the proposed
work was applied, and the obtained results are presented in
Section IV. Section V explains the proposed ERS. Finally,
Section VI summarizes the findings and provides several
concluding remarks.

II. PRELIMINARIES

Dataset. In our case study, the used time-series consisted
of the electricity demand data for a large utility company
covering a population of over 30 million people. The data
were processed and cleaned. The cleaning procedure began
by removing the outliers beyond five standard deviations from
the mean. Thereafter, sudden changes in the demand that lay
beyond reasonable operation were removed. Moreover, any
linear interpolations and monotonic windows were removed.
Finally, the removed sections of the data were imputed using a
methodology proposed in our previous work [10], which uses
singular value decomposition to approximate the missing parts
of the time series with reasonable accuracy. The data ranged
from the first day of the year 2012 until the final day of the
year 2018 with an hourly resolution as shown in Figure 1,
where the horizontal and vertical lines represent the time and
consumption, respectively. This yielded 61,368 points in the
time series, each with an electricity demand corresponding to
the hour that is represented. As depicted in Figure 1, the data
of the period from 2012 to 2017 (86% of all the data) were
used for training, whereas the data of the year 2018 (14% of
all the data) were used for testing. These data were used to
train and validate the day-ahead predictors.

Used Day-Ahead Forecasting Models. To test the proposed
methodology for enhancing the EDF models, two models are
used to perform day-ahead forecasting, which are referred to
as the next-day predictors. The first is an off-the-shelf time
series prediction database (tspDB) model [11], which uses
PostgreSQL and allows the user to perform predictive querying
by imputing missing or corrupted data or forecasting future
points in a time series. The second is the deep neural network
(DNN) model, a known method that can predict patterns with

Fig. 1. Load curve used in training and testing EDF models

high accuracy and is used in the field of electricity demand
forecasting [12, 13, 14]. For that purpose, we developed an
in-house trained DNN model, which consists of an input
layer (that takes one week of lag values) followed by four
dense layers, each consisting of 128 units. The final layer (the
output layer) consists of 24 units that represent the load of the
following day. The tspDB and DNN models is used to predict
the demand for the next day using demand lags as features.

III. ENSEMBLE NEXT-DAY FORECASTER USING PAV
PREDICTORS METHODOLOGY

This section presents new ways to ensemble the next-day
predictor with the independent PaV predictors of the next day.
Figure 2 shows the block diagram that describes the ensemble
methodology that the proposed ensemble algorithms follow.
Fo is a vector consisting of 24 points predicted by the next-
day predictor, referred herein as the original predictor. The
upper and lower blocks represent respectively the PaV points,
p and v, predicted by the independent PaV predictors. The
two plots on the sides showcase the changes that might occur
when ensembling the next-day predictor.

Fm:1 =
(Fo − vo)(p− v)

po − vo
+ v (1)

The original predictor Fo is modified in Equation 1. vo and
po represent the valley and peak of the original predictor, re-
spectively. p and v represent the independently predicted PaV
points, respectively. As a result, Fm:1 is the modified next-day
prediction, which is represented as a vector of 24 points. This
equation is used by Amral et al. [7] to ensemble the next-day
predictor given effective and accurate PaV predictors. This
method is used for comparison and is referred to as the all
horizon (AH) ensemble.

∆F = Fm:1 − Fo (2)
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Fig. 2. Block diagram of the ensemble recommendation system methodology

The next step consists of subtracting the modified next-
day predictor from the original predictor to obtain ∆F , as
indicated in Equation 2.

Ft,m:2 = Ft,o + ∆Ft × (1− 2kt

|indx(p)−indx(v)| ) (3)

Ft,m:3 = Ft,o + ∆Ft × e−kt (4)

The two developed ensemble algorithms are illustrated in
equations 3 and 4. The predicted demand is split into two
regions, where the splitting point is the middle point between
the PaV’s occurrence time. This split ensures to have a peak in
one region, and a valley on the other. Both equations depend
on the time location of PaV on the predicted vector, indicated
as indx(p) and indx(v), and [k = 0, 1, ..., |indx(p)−indx(v)|2 ] is
the absolute time distance of the predicted point from the peak
time, if the point lies on the peak region, or valley time, in case
the point falls in the valley region. Equation 3 applies linearly
decaying modification on each instance t. Based on the region,
where the instance fall (either peak or valley region), the
absolute time distance kt is measured. Applying this method
on the predicted points by the original predictor Fo results in
less modification as the point is further from the PaV location.
This ensemble technique will be named the linear decay (LD)
ensemble. Equation 4 has an exponential decay function that
significantly modifies the PaV points and the points that are
closer thereto, whereas it does not affect the points further
from the PaV in the original predictor. This technique will
be referred to as the exponential decay (ED) ensemble. The
incorporation of AH, LD, and ED ensembles will be explained
in Section V.

IV. EXPERIMENT

In this section, a case study is presented to implement
the proposed ensemble algorithms presented in Section III
on the next-day predictors using independent PaV predictors,
and the results are reported. The used electricity consumption
data and how it is split between training and testing are
described in Section II. Two next-day predictors were used:
the in-house developed DNN and off-the-shelf tspDB, to
forecast each hour of the next day for 2018, as discussed in
Section II. Furthermore, as the DNN model is commonly used
in time-series prediction [12], an independent DNN model was
developed to forecast the PaV points of the next day for the
same year of testing. The historical consumption data are used
to train the PaV predictors. The features used are hourly week

lags and daily month lags of peaks for the peak predictor and
valleys for the valley predictor. In the following section, a
comparison of performance in the prediction of PaV points
between the next-day and PaV predictors will be conducted.

A. PaV Point Prediction
This section evaluates the PaV predictions from the original

next-day predictors (DNN and tspDB) and the independent
PaV predictor models. The performance of PaV predictions
is displayed in Figure 3. Each model has left and right bars,
which represent the mean absolute percentage error (MAPE)
of peak and valley points, respectively. The independent PaV
models are trained for predicting the PaV of the next day, and
it compares the MAPE with that of the PaV point prediction
from the original next-day predictors. The independent PaV
predictors outperform the original next-day predictors in terms
of PaV points prediction. These improved predictions of
PaV points will be used to ensemble the original next-day
predictors. The results of ensembling the next-day predictor
will be presented in the next subsection.

B. PaV Ensemble Algorithms
This section describes the performance of the original next-

day predictors, before and after applying the PaV ensemble
algorithms discussed in Section III. The used PaV points in
the ensemble algorithm are taken from the independent PaV
predictors. Table I presents the average MAPEs of the next-
day predictors for the year 2018, before and after applying all
of the ensemble methods. Depending on the accuracy of the
original next-day predictor, some of the ensemble algorithms
might decrease the accuracy while others improve it. Looking
at the tspDB next-day predictor, the best performing model in
terms of MAPE being highlighted is the AH ensemble, which
shows a 14.8% enhancement in the average MAPE. Moreover,
a slight enhancement of the DNN predictor’s average MAPE,
in addition to the 12% improvement in predicting PaV points,
is obtained using the proposed ED ensemble.

Multiple ways to ensemble the following day predictors are
proposed. The next section will address a novel way to validate
these algorithms and suggest the most suitable ensemble
algorithm that would lead to the maximum improvement to
the next-day predictor.

V. PAV ENSEMBLE RECOMMENDATION SYSTEM (ERS)
The previous section validated the developed ensemble

algorithms. This section will propose the ERS methodology,
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Fig. 3. MAPEs of PaV points for all models

displayed in the block diagram in Figure 2, which helps to
guide the selection of the ensemble algorithms based on the
PaV predictors’ performance. To begin, the construction of the
ERS requires an offline validation for the ensemble algorithms
based on different performances for the PaV predictors, which
is simulated by adding Gaussian noise to the actual data. This
offline validation helps to identify the enhancement of each
ensemble algorithm for the simulated PaV performance. After
the offline validation, ERS is ready to be tested online, which
takes the independent PaV predictors performance as input,
and outputs the best ensemble algorithm to be applied to the
original predictor Fo.

To start the ERS’s offline validation, the next-day predictors
(described in Section II) are used to generate the prediction
of the next day Fo. Next, to sweep across all the possible
performances for the independent PaV predictors, the actual
PaV points of the next day are chosen as the initial state. After
that, the chosen PaV points are used to ensemble the next-
day predictors using all of the described ensemble algorithms.
Thereafter, the MAPE of the next-day predictor is calculated
for all the ensemble methods.

MAPE(%) =
100

24× 365

365∑
j=1

24∑
t=1

∣∣∣∣At,j − Fm,t,j

At,j

∣∣∣∣ (5)

Equation 5 is used to calculate the MAPE across the testing
year (2018) for each ensemble technique applied to the next-
day predictor Fo. At,j represents actual demand for the point
at time t at day j, and [Fm,t,j where : m = [1, 2, 3]] denotes
all the ensemble methods predicted at time t for day j.

p = pa + z, where : z ∼ N(0, σ) (6)

v = va + z, where : z ∼ N(0, σ) (7)

After measuring the MAPE, Gaussian noise is added to
the chosen PaV points. Equations 6 and 7 refer to the peak
and valley points, respectively, where z is independent and
identically distributed with a zero-mean normal distribution

TABLE I
COMPARISON OF AVERAGE MAPES BETWEEN THE ORIGINAL NEXT-DAY

PREDICTORS WITH DIFFERENT ENSEMBLE TECHNIQUES

DNN tspDB
Original 2.74 3.78

AH ensemble 2.82 3.22
LD ensemble 2.73 3.39
ED ensemble 2.72 3.6

and with a variance of σ (the noise). The noise is added to
simulate various independent PaV predictors’ performance.
Repeating the process by adding the noise to actual PaV
and applying Equation 5 would results in mapping the PaV’s
performance with the original predictor’s MAPE, as illustrated
in Figures 4 and 5.

As shown in Figure 4, the validation metric applied to the
next-day predictor DNN model. The y-axis shows the MAPE
of the modified predictor for all the ensemble algorithms.
Owing to visualization constraints, the x-axis represents the
MAPE of PaV predictors, where the MAPE of independent
PaV predictors is assumed to be the same, and the zero MAPE
represents the actual PaV of the next day. The horizontal red
dashed line represents the DNN predictor’s MAPE without
using any ensemble method. The validation metric declares
that for a certain MAPE of PaV predictors, the MAPE of the
ensemble algorithms is measured for the DNN model. Each
ensemble technique has a hashed region where it performs
the best, and by identifying these regions the model would
suggest a suitable ensemble algorithm based on the MAPE of
PaV point predictors. The same process is conducted for the
other next-day predictor, the tspDB model, and the regions are
determined as shown in Figure 5.

The suggested criteria are reliant on the performance of the
independent PaV predictors. If the MAPE of the PaV point
predictors is very high, there will not be any region where
the ensemble technique would enhance the next-day predictor.
In this case, the ERS would suggest not to use any ensemble
method. Moreover, the system determines the best algorithm
to use based on the performance of the PaV predictor inputted
to the ERS. At the same time, the system cuts the number of
ensemble algorithms needed to be applied in the online testing.

VI. CONCLUDING REMARKS

A methodology for enhancing the accuracy of next-day
prediction algorithms has been presented in this paper. The
approach consists of constructing models solely to predict
the PaV points. Subsequently, depending on the MAPE of
the trained PaV point predictors, an ensemble algorithm is
recommended based on an ERS. The ERS will recommend
the most suitable ensemble algorithm, which leads to max-
imum enhancement of the next-day predictor. The results
demonstrated a significant decrease in the MAPE of the off-
the-shelf model for the time series prediction, along with a
slight enhancement in the MAPEs of the in-house developed
DNN model. At the same time, significant improvement was
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Fig. 4. MAPE of PaV predictors vs. average MAPE of DNN predictor for
all the ensemble algorithms

achieved in predicting the peak and valley points, which is
considered to be critical in the planning of power systems.

Although the presented method recommends the suitable
ensemble technique that leads to a significant improvement in
the MAPE of the next-day predictors, as demonstrated in Sec-
tion IV, new ensemble techniques could be developed. Such
techniques could incorporate additional time series measures,
such as the mean and standard deviation, to enhance the time
series predictor. The focus of this study was on the peak and
valley points because of the significance of these data points to
the physical power system, but an extension to the presented
work could incorporate the above-mentioned measures.

Further, future potential areas include examining the per-
formance and reliability of this methodology with time-series
other than that of electricity demand. Moreover, the correction
algorithms are not limited to the ones presented in this paper.
It would also be interesting to investigate the reason why many
off-the-shelf models appear to miscalculate the magnitudinal
aspect of the demand. This may suggest alternative means of
correcting the performance of the models that target the root
of the issue causing the miscalculation in the first place.
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