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Abstract—This paper proposes a new cost-driven approach for
detecting non-technical loss (NTL) of electricity in a resolution-
constrained setting. NTLs are caused by fraudulent behavior
by customers; they are reported to cost $96 billion annually to
utility companies. With the global adoption of smart meters still
in its early stage, with 14% market penetration, many utility
companies must detect NTLs from low-resolution signals. Our
proposed method optimizes for the expected economic return.
It employs a synthetic control approach and ensemble boosting
model that jointly outperform state-of-the-art support vector
machine and random forest methods described in the literature.
We also used a class-imbalance-agnostic precision-recall metric
to validate our approach under various conditions. The whole
analysis was conducted using a subset of a dataset of customer
accounts from a large utility company that serves a population
of over 30 million people. Our proposed method was tested by
the utility company and initial results show ~75% precision in
detecting new NTL cases.

Index Terms—Operational ML, Non-Technical Loss of Elec-
tricity

I. INTRODUCTION

Electrical utility companies around the world face substan-
tial losses and inefficiencies in their electrical power grids.
Some of these losses are caused by the inherent inefficiencies
in different electrical components and are referred to as
technical losses. The rest of losses such as those caused
by unauthorized and fraudulent behavior of customers are
called non-technical losses (NTLs). Statistics [1] show that
NTLs are a global issue in meter-based systems, such as
electricity, water, and gas systems. NTLs in electricity alone
cause estimated annual losses of $96 billion worldwide [2],
and affect both conventional and smart-grid power systems [3].

Numerous solutions were proposed to reduce NTLs; see [4]
and the references therein. In general, these solutions can
be classified into hardware and non-hardware approaches.
Hardware approaches require hardware components to be
added to electrical power grids, which can be costly and
time-consuming. Non-hardware approaches detect NTLs from
patterns and irregularities in consumer data and provide an
attractive and cost-effective solution for electricity utility
companies. Many of the non-hardware approaches proposed
in the literature used state-of-the-art machine learning (ML)
methods [5]. However, many of these approaches require
access to high-resolution consumption data, such as those from
smart-grid implementations, while many utility companies

must still detect NTLs from low-resolution (e.g. monthly)
signals. Viegas et al. [3] showed that more than 55% of the
NTL publications from 2012 to 2016 were on smart meters.
However, the global adoption of smart meters is still in its
early stage. A recent report shows that the market penetration
of smart meters is only 14% [6]. While the adoption of smart
meters reached higher levels in some countries such as UK,
with 30% adoption, most countries around the world are still
at the pilot project stage.

Prior studies on NTLs in the smart-grid context leveraged
recent and advanced ML techniques. For example, one study
presented a novel hybrid convolutional neural network-random
forest model for NTL detection [7]. See Messinis et al. [4] for
more examples. In conventional power grid systems, support
vector machines (SVMs) are one of the most utilized methods.
For example, SVMs were used in [8] to analyze consumption
signals monthly and to achieve a hit rate of 60%. Boolean
and fuzzy logic was used together with a linear SVM in [9] to
detect NTLs in a large dataset, with a reported area under the
receiver operating characteristic (AUROC) curve of 0.56. In
this study, we focused on the context of resolution-constrained
NTLs, where we identified both demand and opportunities to
explore new methods.

Motivation. Most of the studies on NTLs in the literature
mainly considered the development of models that can detect
NTLs with high accuracy. However, it is known from other
domains where fraud is a common issue (e.g., financial fraud)
that optimization for the expected economical return yields
better approaches [10]. Our goal was to propose operational
methods that accurately detect NTLs in resolution-constrained
conventional power systems, and consider the aspect of eco-
nomical operational return for NTL detection. In addition, a
common challenge in the aforementioned literature is that, as
stated in [5], there are no common validation techniques to
measure the detection performance of models. This makes the
comparison of different detection approaches in the literature
a difficult task. Moreover, some of the reported validation
metrics might not be suitable for the imbalance detection task
(e.g., when the number of negative examples highly exceeds
the number of positive examples). We aimed to address this
challenge by utilizing a class-imbalance-agnostic validating
metric for the NTL detection models proposed in our work.
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Contributions. In this study, we used a dataset containing
records from 10000 actual utility accounts. Our main contri-
butions can be summarized as follows:

1) We formulate a cost-driven objective function for NTLs
and develop a new synthetic control (SC) algorithm
that outperforms existing methods in predicting lost
consumption from monthly low-resolution signals.

2) We demonstrate how the use of the gradient boosting
framework XGBoost can produce algorithms that out-
perform traditional classification schemes, such as SVM,
in detecting NTL cases with higher precision.

3) We propose the use of a class-imbalance-agnostic area
under the precision-recall (AUPR) curve metric for
validating the NTL detection models.

We applied and compared different ML models, such SVMs,
random forests (RF), and Bayesian dropout neural networks
(D-NN). For all these different approaches, we report suitable
accuracy metrics that illustrate performance in detecting NTLs
and retrieving revenues. Our classification results show good
discrimination performance in which the AUPR reaches 0.67.
Roadmap. The remainder of this paper is organized as fol-
lows. Section II presents the cost-driven methodology, estima-
tion methods, and detection approaches. Section III describes
the datasets, the experimentation, and the results. Finally,
Section IV presents the conclusions of our study.

II. OPERATIONAL NTLS DETECTION

This section details the methodology of the proposed cost-
driven NTL detection approach. As mentioned in Section I,
prior studies on NTLs exclusively focused on building and
validating accurate classifiers. Classification approaches are
used as a proxy for identifying NTLs and retrieving lost
revenues. However, these approaches do not guarantee the best
economic return, given that there are many operational aspects
that dictate the feasibility of inspecting suspected cases [10].
For example, even under the assumption that the classifiers are
completely accurate (i.e., no false positives), inspecting some
suspected accounts might be financially unprofitable. This is
either due to high inspection costs or low expected return.
This shows the primary challenges for detecting NTLs; not
only there is uncertainty in the detection accuracy that can
cause detection errors, there is also uncertainty in the expected
financial gain, which can result in a net negative outcome even
if true NTL cases are inspected. The optimum solution for
NTLs should optimize for both aspects.

The aspects described above can be formulated as: given
the estimated probability of loss PLi of account i, the esti-
mated difference in consumption CDi due to NTL, and the
anticipated operational cost Ci that does not depend on the
account true class, the economic return for each account Ri

and the objective function that maximizes the expected return
can be expressed in the following terms:

max
I

(∑
i∈I

Ri

)
= max

I

(∑
i∈I

PLi · CDi − Ci

)
(1)

Accounts 
Dataset

NTLs Retreival
Combination

Priority List
Inspection Cost

Calculation
Lost Consumption

Estimation
NTLs 

Classification

Fig. 1. System diagram for prioritizing detection based on expected return.
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Fig. 2. Illustration of consumption estimation procedure using SC.

Note that a recent study showed a similar formulation [11].
Here, I denotes the subset of accounts visited. Equation 1
means that given a limited amount of inspection resources I ,
priority should be put on accounts with higher expected return.
Figure 1 illustrates this concept in a system diagram. Although
optimization for Equation 1 promises higher economic return
than traditional approaches, it also implies a new layer of
complexity given that now, in addition to PLi, CDi must also
be estimated. Hence, our proposed approach considers both the
estimation of the lost load and the detection of NTLs.

A. Synthetic Control Estimator

We first consider the estimation task given that it is less
investigated in prior studies. The estimation of CDi can
be formulated as a regression task. Traditional regression
approaches try to predict points ahead in the future from
historical temporal patterns for each account. This becomes a
challenging task if the available temporal horizon is limited
and the data resolution is low (i.e. monthly). Furthermore,
traditional regression cannot account for exogenous factors
that cannot be predicted from historical patterns. Recent stud-
ies tried to address these challenges with multiple time-series
prediction frameworks that incorporate the concept of SC [12].
In this study, for the first time in the NTLs context, we adapted
an SC-based algorithm for the estimation of CDi.

SC is a statistical method that expresses a time series
as a weighted combination of other time series. In other
words, the regression is done by finding similar time series
(i.e., accounts in the NTL context) instead of learning how
historical patterns correlate with future ones. This approach
addresses the challenges of resolution and exogenous factors,
given that usually the number of accounts exceeds the number
of historical points, and exogenous factors manifest in many
accounts. Figure 2 illustrates the idea of SC when used to
predict lost consumption.



In addition to regressing through accounts, our proposed
algorithm utilizes singular value decomposition (SVD) fac-
torization. We propose denoising the consumption matrix by
truncating its number of singular values to improve the quality
of the subsequent regression. Pseudocode 1 describes the
detailed procedure of the proposed method, where SV D(·, k)
is the truncated SVD operator that limits the rank of its input
(·) to k; LR(·, A) denotes a linear regression (LR) on the
account axis between input (·) and matrix A; Xit contains
the consumption data for many accounts and historical time
points; Ibenign and Isuspected are the indices of the benign
and suspected accounts; and τ is the timestamp after which
the consumption is predicted, which must be chosen to be
before the occurrence of the NTL. The proposed algorithm
was compared with standard LR based on temporal features
and with the random forest regressor proposed in [11].

B. Detection Approaches

Given that the classification of NTLs is an intensely investi-
gated topic, this section focuses on two parts: 1) proposing new
evaluation metrics for model performance and 2) introducing
new models suitable for a resolution-constrained setting.

Prior studies showed that there is an imbalance between the
number of NTL cases and the overall number of customers [4]:
NTLs are usually caused by a small fraction of the customer
base. Thus, special attention is needed when evaluating the
performance of classification algorithms. Some evaluation
metrics might result in overestimation of the performance in
imbalanced binary classification tasks [13]. This includes the
AUROC, which is a popular metric used in prior NTL studies.

For highly skewed classification tasks, precision-recall
curves are more suitable [14]. Therefore, we propose the use of
the AUPR as a metric to validate NTL detection performance.
Precision and recall can be defined in relation to true positives
(TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs) as follows:

Precision (p) =
TP

TP + FP
(2)

Recall (r) =
TP

TP + FN
(3)

The AUPR summarizes the precision and recall such that it
judges the model’s ability to rank the accounts based on the
estimated probabilities. If P = [p1, ..., pn] and R = [r1, ..., rn]
constitute the point estimate of the precision-recall pair or-
dered from the lowest recall to the highest, the AUPR can be
accurately estimated [15] using the average precision (AP):

AUPR ≈ AP =
∑
n

(rn − rn−1) pn (4)

The classification model pool consists of six models in total.
We propose to use XGBoost, an ensemble algorithm composed
of many simple decision-tree algorithms. It was theoretically
shown that this class of ensemble algorithms is well suited
for unbalanced binary classification problems [16]. This is

Pseudocode 1: Synthetic control estimator
Input: Xit, Ibenign, Isuspected, k, τ .
Initialize:

1 Perform SV D(Xit, k) to denoise Xit for t ≤ τ
2 Assign Xit where i ∈ Ibenign, t ≤ τ to Bpre

3 Assign Xit where i ∈ Ibenign, t > τ to Bpost

4 for j ∈ Isuspected do
5 Assign Xit where i = j, t ≤ τ to Spre

6 Perform LR(Spre, Bpre) and obtain weights β
7 Perform Spost = β ·Bpost

8 Store Spost as prediction for account j
9 end

because each of the base models used in the ensemble can
focus on different parts of the feature space. This provides
high nonlinearity in terms of capturing intertwined classes.
We also propose to use Bayesian dropout NN structures [17],
because the dropout propriety reduces overfitting when the
number of positive examples is low. To the best of our
knowledge, these two models were never used for detecting
NTLs in conventional power grid configurations. We included
SVMs because they were used in many prior studies. We
also included easily interpretable models, such as logistic
regression (LR) and k-nearest neighbors (KNN), and highly
nonlinear RFs. These models are compared in the next section.

III. EXPERIMENT

In this section, we describe the used dataset and the devel-
oped models. We also compare the results achieved with the
proposed method in multiple scenarios.

A. Dataset

The dataset utilized in this study contains 10000 actual
monthly customer data from a large utility company in the
MENA region recorded in 2017 and 2018. Formally, {Xi, yi}
respectively denote the feature matrix and label vector, where
i = 1...10000 is the index representing the number of accounts
in the dataset. To generate the labels yi, thorough inspections
were conducted for each individual account by the utility
company, and an account was labeled as positive if NTLs were
detected. Ten percent of the examples in the dataset constitute
positive NTL cases. The feature vector Xi consists of two main
categories: energy consumption (EC) and auxiliary data (AD).
The EC is in turn divided into 24 monthly readings, while the
AD contains information such as the breaker capacity, account
category (e.g. residential), and meter type (e.g. mechanical).

B. Regression Experiment

To evaluate the regression performance of our proposed SC
approach, we considered predicting the EC of the negative
class. Given that the actual consumption of the positive class
is unknown, it was difficult to evaluate the performance of re-
gression models on the positive class. In our experimentation,
we used the negative accounts to evaluate the performance,
mainly because the ground truth about how these accounts
normally behave was available throughout the full horizon.



TABLE I
ESTIMATION PERFORMANCE FOR ENERGY CONSUMPTION

Linear
Regression

Random
Forest

Synthetic
Control

R2 0.52 0.54 0.61

MSE 1.00 0.98 0.84

The first 18 months in consumption were used as features
to predict the last 6 months (i.e., τ = 18), and 30% of the
accounts were left for testing.

We compared our proposed method with the standard LR
algorithm and the RF regression algorithm used in [11] in
terms of CDi prediction. Through cross-validation on the
training set, k = 7 resulted in the best performance for our
method. Table I shows a comparison of the three different
methods in terms of prediction accuracy on the testing set
using the coefficient of determination score (R2) and the mean
squared error (MSE). The MSE was normalized by the LR
model’s error, so the figures measure relative performance
compared to LR. These results demonstrate 15% reduction in
estimation errors by using our approach, which showcases its
performance advantage against previously proposed methods
in prediction of consumption patterns.

Overall, improvement in estimation approaches, especially
in the more challenging resolution-constrained setting, facili-
tates the operational NTL formulation described in Section II.
In the following sections we show how this approach can
be more viable to utility companies than traditional NTL
detection methods in obtaining a higher revenue.

C. Classification Experiment

This section details the framework for training and testing
the classification models and compares their detection capa-
bility. To train and tune the models, 70% of the available data
were used, while the remaining 30% were used to validate the
performance and generate the results presented in this section.

In addition to the feature matrix Xi, the dataset was
augmented with additional engineered features. These features
include different statistics throughout two years of consump-
tion (e.g. standard deviation), normalized first derivative, and
accounts clustering based on breaker capacities. For each of
the models, hyperparameter tuning was conducted through
cross-validation when applicable. Table II summarizes the
optimum parameters found for each classification model.

Figure 3 illustrates scenarios in which each model was
trained on the training dataset with access to all available
features. Note that AUPR was obtained using the AP estimate.
It is evident that AUROC provides misleading information
regarding the performance of the models given that all models
exhibit very good scores exceeding 0.85. Moreover, there are
no clear differences between the models. However, AUPR
performs differently. There are clear gaps between the models;
it was expected that simple linear models do not perform
in this classification tasks as effectively as more complex
nonlinear models due to imbalance and classes intertwine.

TABLE II
HYPERPARAMETERS OF THE CLASSIFICATION MODELS

Model Parameters

XGBoost
Estimators: 300 Max Depth: 11

Γ: 0.3 η: 0.075
RF Trees: 425 Criterion: Gini

D-NN
Hidden Layers: 3 Activation: ReLU
Layers Size: 128 Dropout Rate: 0.3

SVM Kernel: RBF C: 0.1
KNN Neighbors: 75 P: 2
LR Penalty: L2 C: 0.005
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Fig. 3. Detection performance using all features.

It is also important to note that the rankings of SVMs
and D-NN change as a function of the followed metric, i.e.,
AUROC or AUPR. To investigate this aspect further, we
plotted precision-recall (PR) curves and receiver operating
characteristic (ROC) curves in Figure 4 for the XGBoost, D-
NN, and SVM models, respectively. Note that the performance
curves of SVMs and D-NN intersect. Without these intersec-
tion points, the AUPR and AUROC should both provide the
same ranking [13]. The PR curve shows that the D-NN model
achieves higher detection precision with respect to SVMs.
Specifically, it achieves up to 7̃0% recall (detecting 70% of
the positive class) with fewer FPs than SVMs, which overall
results in a larger AUPR curve. However, in the ROC curve,
the intersection point between the D-NN and SVMs models is
markedly skewed to the left by the fact that the denominator
of FP rate is defined by the total number of negative classes.

Overall, highly non-linear tree-based algorithms such as
XGBoost and the RF showed the best performance in the
resolution-constrained NTLs scenario considered in this study.
The proposed method was tested by the utility company on
districts not included in the training, and initial results show
~75% precision in detecting new NTL cases. Our experiments
also showed how incorrect validation of the detection models
can result in sub-optimal model selection, which will harm
subsequent components that depend on models’ outputs, such
as the revenue optimization component described in Section II.

D. Profit Retrieval Experiment

Finally, we compared between traditional NTLs methods
and our proposed cost-driven method in terms of profit re-
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trieval capability. The test set in Subsection III-C was priori-
tized (or ordered) to generate two lists: 1) based on XGBoost
classification probabilities alone (as in typical methods), and 2)
based on the expected revenue that was derived in Equation 1
using SC and XGBoost. The Equation 1 in this setup is subject
to additional cardinality constraint on set I , as we dictate the
number of accounts (n) to be selected form each list and then
compare the retrieved profits. Table III shows the percentage
profit increase for using our method for multiple values of n.
The table shows significant increase in profit for using our
cost-driven method, with more than 70% increase in profit
when the comparison is between the highest elements in the
two lists. The more the accounts are inspected, the less is
the difference between the two methodologies. The percentage
overlap between the elements of the two lists is also calculated
for the different values of n. The figures show fundamental
difference between the two prioritized lists, which is to be ex-
pected as our method considers additional operational aspects
that are not considered in traditional methods.

IV. CONCLUSION

In this paper, a cost-driven approach for detecting electrical
NTLs in a resolution-constrained setting is presented. We show
how the NTL context can be formulated such that it optimizes
for the expected return from a cost-driven point of view. We
facilitate such formulation by developing a new SC approach
that outperforms existing methods in predicting consumption
from monthly low-resolution signals. Our approach optimizes
detection models by using a class-imbalance-agnostic AUPR
metric and a very nonlinear ensemble boosting model, e.g.,
XGBoost, to improve performance. Our approach was tested
by a utility company on a new sample of accounts, and initial
results show ~75% precision in detecting new NTL cases.

An extension of this study could include further analysis of
the operational NTLs described under a resolution-constrained
setting and the performance and reliability of our approach
for other metered utility domains, e.g., gas and water. Ad-
ditionally, algorithms that manage other operational aspects,
such as routing of inspection resources, can be explored and
analyzed to maximize the expected recoverable revenue. This
might require novel end-to-end strategies for correcting and
optimizing the detection performance to reflect operational
constraints better.

TABLE III
COMPARING THE PROPOSED METHOD WITH THE TRADITIONAL APPROACH

n 250 1000 2500

Profit Increase 72.9% 17.1% 3.1%

Accounts Overlap 9.2% 34.6% 81.5%
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