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Abstract
The problem of sample complexity of online reinforcement
learning is often studied in the literature without taking into
account any partial knowledge about the system dynamics
that could potentially accelerate the learning process. In this
paper, we study the sample complexity of online Q-learning
methods when some prior knowledge about the dynamics is
available or can be learned efficiently. We focus on systems
that evolve according to an additive disturbance model of the
form Sh+1 = f(Sh, Ah) + Wh, where f represents the
underlying system dynamics, and Wh are unknown distur-
bances independent of states and actions. In the setting of
finite episodic Markov decision processes with S states, A
actions, and episode length H , we present an optimistic Q-
learning algorithm that achieves Õ(POLY(H)

√
T ) regret un-

der perfect knowledge of f , where T is the total number of
interactions with the system. This is in contrast to the typi-
cal Õ(POLY(H)

√
SAT ) regret for existing Q-learning meth-

ods. Further, if only a noisy estimate f̂ of f is available, our
method can learn an approximately optimal policy in a num-
ber of samples that is independent of the cardinalities of state
and action spaces. The sub-optimality gap depends on the ap-
proximation error f̂ − f , as well as the Lipschitz constant of
the corresponding optimal value function. Our approach does
not require modeling of the transition probabilities and enjoys
the same memory complexity as model-free methods.

Introduction
Motivations. Reinforcement learning (RL) algorithms
have achieved tremendous success in various domains, and
the literature has seen an influx of methods with prov-
able non-asymptotic guarantees. Many of these results are
problem-agnostic and the theoretical guarantees are limited
by the worst-case scenarios. At the same time, one would
hope that the sample efficiency of RL could be tied to the in-
herent measures of complexity of the problem’s dynamics,
with ways to accelerate learning if some prior knowledge
about the problem is available. Indeed, the following ques-
tion in its full generality is still open:

How can we improve the sample efficiency of RL methods
when some structure about the underlying dynamics is

known or can be learned efficiently?
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Practical methods that aim to address the previous question
should carefully balance the sample complexity (number of
interactions with the system) and computations (time and
memory) spent in planning or improving policies. Our pri-
mary objective is to incorporate prior structural information
without extensive offline computation or access to strong
computational oracles.

Systems of Interest. Learning complexity in RL is mul-
tifaceted, and is influenced by uncertainty in both rewards
and dynamics (see, e.g., Lu et al. (2023) for an introduc-
tory treatment on the subject). In the interest of tractability,
herein, we focus our attention on a specific class of RL prob-
lems with uncertainty in the dynamics only. We consider a
classM of Markov Decision Processes (MDPs) where the
state transition is governed by:

Sh+1 = f(Sh, Ah) +Wh (1)

where f , which may be partially or approximately known,
represents the dynamics or fixed structure of the system, and
Wh are unknown disturbances independent of states and ac-
tions. Further, we assume the reward r function is known;
and thus, all the uncertainty is in the state transitions. Par-
tial dynamics knowledge is modeled via the availability of
an approximation f̂ of f that satisfies ∥f̂ − f∥∞ ≤ ζ/2.
Note that this is different than sim-to-real literature, where
it is often assumed that one has a detailed probabilistic de-
scription of an approximate model (Jiang 2018; Feng, Yin,
and Yang 2019) or an approximate generative model where
we can sample an arbitrary amount of trajectories without
cost (Chen et al. 2022). See the next section for a detailed
comparison. Furthermore, even if f is fully known, one can-
not apply dynamic programming here as the disturbances
Wh are not known even in distribution (in fact, this can be
the main challenge in many practical problems). Finally, we
shall see that restricting to linear disturbance models is ben-
eficial for devising computationally efficient algorithms.

Many applications fit the setting described above. In op-
erational tasks, like inventory control and demand response
problems (Vázquez-Canteli and Nagy 2019), the structural
function f is often known and the challenge lies in optimiz-
ing for the unknown non-stationary demand signals. In con-
trol tasks, where the dynamics rise from parametric physical
models, one might only know f approximately due to para-
metric uncertainty (Bhattacharyya 2017; Taylor et al. 2021).
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Structural Knowledge Algorithm Regret Time Space

UCBVI (Azar, Osband, and Munos 2017) Õ(
√
H2SAT +H4S2A) O(S2AT ) O(S2AH)

UBEV (Dann, Lattimore, and Brunskill 2017) Õ(
√
H3SAT +H2S3A2) O(S2AT ) O(S2AH)

UCB-H (Jin et al. 2018) Õ(
√
H4SAT ) O(T ) O(SAH)

Q-EarlySettled-Advantage (Li et al. 2021b) Õ(
√
H2SAT +H6SA) O(T ) O(SAH)

With UCB-f (this work) Õ(
√
H6T ) O(SAT ) O(SAH)

Without

Table 1: Summary of regret, time, and space complexities of Q-learning algorithms on finite episodic MDPs.

For all of these problems, the assumption of known reward
is not restrictive as the reward function is a design parameter.

Contributions. We study the previously stated research
question under the finite episodic MDPs setting. Our main
findings can be summarized as follows:

• Under the perfect knowledge of f , we propose an opti-
mistic Q-learning method that achieves Õ(

√
H6T )1 re-

gret with high probability without requiring any special
assumptions on f or the distribution of the unknown dis-
turbances Wh.

• If only a noisy estimate f̂ of f with ∥f̂ − f∥∞ ≤ ζ/2
is available, we show that our algorithm is able to learn
(with high probability) an O(LζH2)−optimal policy in
a number of samples that is independent of the cardinal-
ities of state and action spaces. Here, L is the Lipschitz
constant of the optimal value function, which character-
izes its smoothness.

• We further show that if an asymptotically accurate on-
line estimator that can generate a sequence of functions
{f̂i}Ki=1 with ∥f̂i − f∥∞ ≤ O(

√
d/i) exists, then the

regret of using such estimators with our algorithm is
Õ(
√
H6T + L

√
HdT ).

To put these results in perspective, we compare our
method with different problem-agnostic Q-learning algo-
rithms in Table 1. Our algorithm effectively incorporates
the structure in a way that trades off regret and computa-
tion without requiring the S2 space and time dependency of
model-based methods.

Related Literature
The RL literature spans decades and is extensive. This sec-
tion focuses on a concise review of the most relevant works
to our study.

RL without Simulator. In the finite episodic setting
without access to a simulator, the best regret bound
Õ(
√
H2SAT ) is achieved by both model-based (Azar, Os-

band, and Munos 2017) and and model-free (Li et al.
2021b) Q-learning algorithms. These results are known to
be minimax-optimal, and are thus, constrained by the worst-
case scenarios. See Domingues et al. (2021) for the lower
bound proofs and the construction of worst-case MDPs.

1The Õ(·) notation is analogous to the standard O(·) notation
while ignoring POLYLOG(S,A,H,K, 1/p) dependencies.

Problem-dependent bounds characterize sample complex-
ity by additional metrics, such as the maximum per-step
conditional variance (Zanette and Brunskill 2019), mini-
mum sub-optimality gap (Yang, Yang, and Du 2021), or the
gap-visitation complexity (Wagenmaker, Simchowitz, and
Jamieson 2022), and show sharper bounds when these met-
rics are small. Still, these bounds often show the same poly-
nomial scaling in the cardinalities of states and actions as the
problem-free bounds.

RL with Approximate Model/Simulator. The use of an
approximate model or an approximate simulator in the train-
ing of RL methods, sometimes called sim-to-real transfer,
was shown to effectively improve the sample complexity
both empirically (Bousmalis et al. 2018; Zhao, Queralta, and
Westerlund 2020) and theoretically (Chen et al. 2022). Our
work is perhaps closest to this line of work in the literature.
In (Jiang 2018), the author assumes access to a probabilistic
description of an approximate transition kernel, and, under
some assumptions, they characterize the sample complexity
by the number of incorrect state-action pairs in the approxi-
mate kernel. In an alternative approach, the work of (Ayoub
et al. 2020) assumes that the actual transition kernel belongs
to a known family of models and provides an algorithm with
regret that scales with the Eluder dimension for this fam-
ily. Both works show interesting results where the sample
complexity does not scale with the number of states and ac-
tions. On the other hand, the algorithms are computationally
intensive, requiring a dynamic programming (DP) solver in
each iteration. Our work differs from this literature as we do
not require an oracle DP solver, nor do we require a detailed
probabilistic description of the approximate model.

RL with System Identification. Rather than depending
on a prior approximate model, other studies in the litera-
ture alternate between learning the model (i.e., system iden-
tification) and planning with RL (Nagabandi et al. 2018;
Zhang et al. 2019; Schrittwieser et al. 2021). In terms of the-
oretical analysis, the most prominent examples are for the
Linear-quadratic regulators (LQRs), where the sample com-
plexity of the planning under an unknown model has been
thoroughly quantified by the intrinsic measures of the diffi-
culty of learning linear systems (Dean et al. 2018; Cassel,
Cohen, and Koren 2020). Algorithms for LQRs heavily rely
on structural properties (e.g., the fact that the optimal policy
is linear and the optimal value function is quadratic) in their
design and cannot be immediately generalized to a broader
class of problems.
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Algorithm 1:
(
UCB-f

)
Optimistic Q-learning with f̂

1: Initialize Q1
h(s, a)← H and V 1

h (s)← H for all (s, a, h) ∈ S ×A× [H]
2: for episode k = 1, . . . ,K do
3: Receive sk1 ▷ Initial state
4: for step h = 1, . . . ,H do
5: akh ← argmaxa′ Qk

h(s
k
h, a

′) ▷ Greedy action with respect to Qk
h

6: Take action akh and observe next state skh+1

7: wk
h ← sh+1 − f̂(sh, ah) ▷ Transition randomness

8: for all s ∈ S do
9: for all a ∈ A do

10: s′ ← f̂(s, a) + wk
h ▷ Simulated next state

11: Qk+1
h (s, a)← (1− αk)Q

k
h(s, a) + αk

[
rh(s, a) + V k

h+1(s
′) + bk

]
▷ Q-learning update

12: V k+1
h (s)← min

{
H, maxQk+1

h (s, ·)
}

▷ Value function update

Preliminaries
We consider an episodic MDP described by the tuple
(S,A, H,P, µ, r), where S = {1, 2, . . . , S} ⊆ N and
A = {1, 2, . . . , A} ⊆ N are the finite state and the action
spaces, H is the number of steps in each episode, P is the
transition kernel such that Ph(·|s, a) is the distribution over
next states if action a is taken at state s and step h, µ is the
distribution of initial states, and rh : S ×A → [0, 1] are the
deterministic reward functions. For convenience, we define
[PhV ](s, a) := Es′∼Ph(·|s,a)[V (s′)] for any V : S → R.

We use π to denote a stationary deterministic policy,
which is a collection of H functions {πh : S → A}h∈[H]

2.
The value function V π

h : S → R and action-value function
Qπ

h : S ×A → R of a policy π are defined as:

V π
h (s) := E

[
H∑

t=h

rt(st, πt(st))
∣∣∣ sh=s

]
(2)

Qπ
h(s, a) := rh(s, a) +E

 H∑
t=h+1

rt(st, πt(st))
∣∣∣ sh=s, ah=a

 (3)

Further, we adopt the convention that V π
H+1(s) = 0 for any

policy. Since the state space, action space, and horizon are
all finite and rewards are bounded, there always exists an
optimal policy π⋆ that achieves the optimal value V ⋆

h (s) =
supπ V

π
h (s) for all (s, h) ∈ S × [H] (Bertsekas 2017). For

all (s, a, h) ∈ S × A × [H], the Bellman equations for a
policy π and Bellman optimality equations are:

V π
h (s) = Qπ

h(s, πh(s)), Qπ
h(s, a) = (rh+PhV

π
h+1)(s, a)

V ⋆
h (s) = max

a′∈A
Q⋆

h(s, a
′), Q⋆

h(s, a) = (rh+PhV
⋆
h+1)(s, a)

(4)

We say that a policy π is ϵ-optimal if V π
1 (s) ≥ V ⋆

1 (s)− ϵ
for all s ∈ S. Suppose an agent interacts with the MDP for a
total of K episodes. The total number of steps is T := HK.
The agent selects a policy πk at the start of each episode
k ∈ [K], receives an initial state sk1 drawn from the initial
state distribution µ, and uses πk to generate all actions in
episode k. We define the cumulative regret for the agent as:

Regret(K) :=

K∑
k=1

[
V ⋆
1 (s

k
1)− V πk

1 (sk1)
]

(5)

2For any integer n ∈ Z+, we define [n] := {1, 2, . . . , n}.

We restrict the transition kernel P such that the state tran-
sitions are governed by Sh+1 = f(Sh, Ah) + Wh, where
f : S × A → S is a deterministic function and Wh are
random variables with bounded support {0, 1, . . . ,W} (i.e.,
|Wh| ≤ W ) generated independently of states and actions.
An approximation f̂ of f is a function S × A → S that
satisfies ∥f̂ − f∥∞ = sup(s,a) |f̂(s, a)− f(s, a)| ≤ ζ/2.

Main Results
In this section, we present our main algorithm and its for-
mal sample complexity guarantees. As we will see shortly,
our algorithm is able to achieve

√
T regret without depen-

dency in S and A when f is known (ζ = 0). In the presence
of persistent approximation errors, the algorithm accumu-
lates additional regret that is upper-bounded by a term of the
form O(LζHT ). In the case that approximation errors are
nonzero but asymptotically diminishing, the linear term can
be suppressed and

√
T scaling of regret is restored.

Algorithm
We begin by providing the intuition behind our algorithm.
The state transitions in Equation 1 implies that for all
s′, s1, s2 ∈ S, a1, a2 ∈ A, and h ∈ [H], we have:
Ph(s

′|s1, a1) = Ph(s
′|s2, a2) if f(s1, a1) = f(s2, a2) (6)

Thus, if one observes a transition from (sh, ah) to (sh+1),
the structure of the transition probabilities suggests that the
Q-learning update can be extended to all (s, a) ∈ S × A
pairs according to:

Q̂h(s, a)←(1− α)Q̂h(s, a) +

α
[
rh(s, a) + V̂h+1

(
f(s, a) + wh

)] (7)

where wh = sh+1 − f(sh, ah) and α is a learning rate. One
interpretation of the above scheme is that f is used to sim-
ulate transitions for state-action pairs not vised in the real
trajectories. We contrast this with the typical asynchronous
Q-learning that only update (sh, ah):

Q̂h(s, a)←


(1− α)Q̂h(s, a) +

α
[
rh(s, a)+V̂h+1(sh+1)

]
, if (s,a)=(sh,ah)

Q̂h(s, a), otherwise

(8)

3



In Algorithm 1, we present an optimistic implementation
of the previous scheme, where bonuses are added to the Q-
update to incentivize exploration. The exact bonus values
will be given in the formal results as they depend on the
context. Moreover, there is a specific choice for the learning
rate, and it should be set to αt = H+1

H+t . We will discuss
the importance of this choice in the next section as well. We
also note that all the value functions in Algorithm 1 can be
updated in place, and the dependency on k (i.e, Qk+1 � Qk)
is only for clarity of the analysis.

While the updates carried by Algorithm 1 might at
first seem similar to synchronous Q-learning (Li et al.
2021a), there are fundamental differences. In synchronous
Q-learning, the algorithm would receive independent sam-
ples for every state-action pair, and no cost (i.e., regret) is
incurred during this process. On the other hand, our algo-
rithm only receives samples from the trajectory of its greedy
policy and accumulates regret while it explores. Finally,
our algorithm can be implemented in a model-based fash-
ion, with explicit parameterization of transition probabili-
ties. This could enable more complex transition structures
than the one in Equation 6 to be encoded in the Q-updates,
but it is unnecessary in our case, so we choose the model-
free implementation for its computational advantages.

Sample Complexity
In general, we need to assume some regularities in the value
functions for learning with a noisy estimator to be feasible.
In our analysis, we assume Lipschitz continuity. That is, for
all s1, s2 ∈ S and h ∈ [H], we have3:

|V ⋆
h (s1)− V ⋆

h (s2)| ≤ L|s1 − s2|. (9)

In the following we assume that Algorithm 1 is run with a
noisy estimate f̂ that satisfies:

∥f̂ − f∥∞ ≤ ζ/2 (10)

where ζ is known. With these, we are ready to state our for-
mal regret guarantee.

Theorem 1. For any p ∈ (0, 1), let the bonus term applied
for all Q-learning updates during the k-th episode be bk =

c
√

H3 log(SAH/p)
k +Lζ. Then with probability 1−p, the total

regret of Algorithm 1 when applied to the class of MDPs in
Equation 1, is at most O(

√
H6Tι + LζHT ), where c > 0

is an absolute constant and ι = log(SAH/p) logK.

A few comments are in order. The theorem implies that
when ζ = 0, we are able to achieve

√
T regret with only

a logarithmic dependency on the cardinalities of states and
actions. When ζ > 0, a linear ζT term in the regret is un-
avoidable due to the persisting bias from using f̂ instead of
the true function f (see, e.g., Jin et al. (2020) for similar re-
sults under model mismatch). A key observation is that our

3Note that L = H holds trivially for any MDP in our setting;
nonetheless, one would hope that L ≪ O(H). An upper bound
on L can be derived from Lipschitz constants of f̂ and r without
access to the optimal value functions (Hinderer 2005).

algorithm does not amplify this term by any factor that de-
pends on the number of states and actions. Besides regret,
our algorithm also enjoys direct guarantees on its policies.

Theorem 2. Under the same conditions of Theorem 1, Al-
gorithm 1 will generate a policy that is (ϵ + O(LζH2))-
optimal with probability 1−p, when the number of episodes
K is at least O

(
H7ι
ϵ2

)
, where ι = log(SAH/p).

Similar to Theorem 1, the policy converges to the opti-
mal policy when ζ = 0, and to a sub-optimal policy when
ζ > 0. Further, we believe that the dependency on H is
not sharp and can be improved (see, the Discussion section).
It is worth noting that Theorem 2 does not rely on heuris-
tic translations of regret to best policy identification. These
translations typically have suboptimal 1/p2 dependency and
only hold with constant probability (Ménard et al. 2021).
Whereas, Theorem 2 has the optimal log(1/p) scaling and
holds with high probability.

Finally, we state the results for the case where the esti-
mates f̂ can be improved over time in an online fashion.

Theorem 3. Suppose that there exists an online estimator
that generates a sequence of functions {f̂i}Ki=1 such that
∥f̂i−f∥∞ ≤ O(

√
d/i) holds uniformly with high probabil-

ity, then the regret of using such estimators with Algorithm 1
is at most Õ(

√
H6T + L

√
HdT ).

In general, without any assumptions on f , the parameter
d could scale with O(SA), and the results in Theorem 3
would match the worst-case bounds in terms of the scaling
with the number of states and actions. On the other hand,
if f is parameterized with few parameters or belongs to a
family of functions where efficient online estimators exist,
the theorem implies that the sample complexity is tied di-
rectly to the complexity of learning f . An important point to
mention is that the online estimator needs to work from the
data generated by the greedy policies {πi}Ki=1. If the O(K)
switching of policies is too fast for the online estimator, one
could exponentially reduce the switching of policies with-
out any large impact on the regret (see, e.g., the work of Bai
et al. (2019) for aO(logK) switching and the work of Qiao
et al. (2022) for a O(log logK) switching).

Proofs Sketch

In this section, we provide the intuition behind the proof of
our results. For clarity, we will focus on the noiseless case
ζ = 0. The full proofs for the general case ζ > 0 are pro-
vided in the appendix. We use (skh, a

k
h, w

k
h) to denote the

actual state, action, and randomness observed or chosen at
step h of episode k. In addition, we use πk

h to denote the
greedy policy with respect to Qk

h. Notice that akh = πk
h(s

k
h).

Further, we define an empirical transition operator at step
h of episode k as [P̂k

hV ](s, a) := V
(
f(s, a) + wk

h

)
for all

(s, a) ∈ S × A. Moreover, we use c > 0 to denote an abso-
lute constant and ι := log(SAH/p) to denote a log factor.

4



(Qk
h −Q⋆

h) Decomposition
To start, we define useful quantities for the learning rate that
will help us expand the updates carried out by Algorithm 1:

α0
t := (1−α1) · · · (1− αt) =

∏t
j=1(1− αj)

αi
t := αi(1− αi+1) · · · (1− αt) = αi

∏t
j=i+1(1− αj)

(11)

α0
t can be understood as the weight of the Q-value initializa-

tion in the current estimate of Q-values after t total updates,
while αi

t as the weight of the ith update. With these defini-
tions, we have for t = k − 1 ≥ 1:

(Qk
h −Q⋆

h)(s, a) =

t∑
i=1

αi
t

[(
V i
h+1 − V ⋆

h+1

)
(f(s, a) + wi

h)

+
(
P̂i
h − Ph

)
V ⋆
h+1(s, a) + bi

] (12)

There are three sources of errors in the previous equation:
The bootstrapping with V i

h+1 instead of V ⋆
h+1, using sam-

ples P̂i
h to approximate the true expectation Ph, and finally

the bias due to adding optimism bonuses. Notice that, from
concentration (Dubhashi and Panconesi 2009), we know that
the variance of (P̂i

h − Ph) will scale with O(1/
√
i) and the

bonuses should be designed to have the same scaling. Fur-
ther, (V i

h+1 − V ⋆
h+1) is related to (Qi

h+1 − Q⋆
h+1), which

would allow us to accumulate the errors over h by recursion.
A key challenge in model-free Q-learning is controlling

the propagation of errors over the H steps. To illustrate this
point, consider if we used a typical learning rate of ηt = 1/t.
In this case, we have ηit := (1−η1) · · · (1 − ηt) = 1/t

and
∑t

i=1
ηi
t√
i
≈
√

log t
t . If we then do a recursion over h

we would end up with (Qk
1 − Q⋆

1) ≈
(log k)H/2

√
k

, which is
exponential in H . The following lemma, which is a fine-
grained version of the one shown in (Jin et al. 2018), shows
that we can avoid this exponential scaling with the rescaled
linear rate αt =

H+1
H+t .

Lemma 1. The following holds for αi
t:

1

ta
≤

t∑
i=1

αi
t

ia
≤

1 + 1
H

ta
for every t ≥ 1 and a ∈

[
1
2 , 1
]

Convergence of On-Policy Errors
Then, using Azuma-Hoeffding inequality, we choose bt such
that the following holds simultaneously for all (s, a, h, k) ∈
S ×A× [H]× {2, . . . ,K} with high probability:

0 ≤
t∑

i=1

αi
t

[(
P̂i
h − Ph

)
V ⋆
h+1(s, a) + bi

]
≤ 2c

√
H3ι

t
(13)

Now, starting from Equation 12 and equipped with
Lemma 1 and the upper bound in Equation 13, we construct
a careful recursive argument that shows a convergence of the
Q-value on-policy (i.e., for the actions chosen by πk) errors:

Lemma 2. Let {Ph}Hh=1 be a sequence that satisfy the fol-
lowing recursive relationship:

Ph = 4

(
1 +

1

H

)
c
√
H3ι+

(
1 +

1

H

)
Ph+1

where PH+1 := 0. Then, for any p ∈ (0, 1), letting
bt = c

√
H3ι/t, the following holds simultaneously for all

(s, h, k) ∈ S × [H]× {2, . . . ,K} with at least 1− p prob-
ability:

0 ≤ (V k
h − V ⋆

h )(s) ≤ (Qk
h −Q⋆

h)(s, π
k
h(s)) ≤

Ph√
t

where t = k − 1.
Lemma 2 states that the value function estimates are opti-

mistic and converge with a 1/
√
k rate. Importantly, the state-

ment holds uniformly for all s ∈ S . Note that the error in
Q1

h is determined by the initialization, and thus, is excluded
from the lemma. Finally, the elements {Ph}Hh=1 are upper
bounded by a function that is polynomial4 in H and and log-
polynomial in S and A:

Ph ≤ 4(1 +H − h)c
√
H3ι

(
1 +

1

H

)1+H−h

(14)

We note that the argument presented here is different than
the one used in previous literature (e.g., in Jin et al. (2018)
or Li et al. (2021b)), where the propagation of errors over
the H steps is controlled after summing over K and using
different property of αi

t. We cannot apply the same argument
here as it requires that the Q-values are updated only for a
single trajectory per episode, while in our case all the Q-
values are updates per episode. Our argument exploits the
uniformity of the number of updates for every (s, a) pair to
show convergence before summing over K.

Regret and Best Policy Identification
Now, we bound the suboptimality gap (V ⋆

h − V πk

h ). Follow-
ing the standard techniques for optimum-based methods, we
start by showing:(

V ⋆
h − V πk

h

)
(s) ≤

(
V k
h − V πk

h

)
(s)

≤
(
Qk

h −Q⋆
h

)
(s, πk

h(s))

+ Ph

(
V ⋆
h+1 − V πk

h+1

)
(s, πk

h(s)) (15)

The first equality follows as V k
h ≥ V ⋆

h and the second from
Bellman Equations 4 after adding and subtracting Q⋆

h. No-
tice that the first term in Equation 15 is upper bounded by
Lemma 2 and the second term is an expectation over subop-
timality gap in the next step h + 1. Thus, we can establish
by recursion that the following holds with high probability:

(
V ⋆
1 − V πk

1

)
(s) ≤

H∑
h=1

Ph√
k − 1

≤ O

(√
H7ι

k − 1

)
(16)

This is sufficient to show convergence to optimal policies,
and regret follows immediately by summing over K and ap-
plying Jensen’s inequality. The proofs for ζ > 0 follow the
same recipe presented here but are more elaborate as the
bonus design needs to guarantee that the estimates Qk

h are
optimistic even with the errors in f̂ .

4The the elementary fact
(
1 + 1

x

)x ≤ e is helpful here.
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Figure 1: (V ⋆
1 − V πk

1 ) for different Q-learning algorithms on randomly generated MDPs. Each curve is an average of 50
simulations. The dashed lines are the performance of the greedy policy with respect to the rewards.

Experiment
In this section, we empirically compare our algorithm with
multiple problem-agnostic Q-learning algorithms from the
literature. In particular, we compare with the model-free
UCB-H method of Jin et al. (2018) and the model-based
UCBVI method of Azar, Osband, and Munos (2017). When
we test Algorithm 1, we either provide it the true function f
(to test ζ = 0) or we corrupt f with random noise (to test
ζ > 0) before we give it to the algorithm. Inside a single run,
the approximate function f̂ is kept fixed across the time T .

Environments. We compare the algorithms on randomly
generated MDPs with varying cardinalities. Further, as our
method and UCBVI require the rewards to be known, we
choose to make rh(s, a) = rh(s). This ensures that there is
no utility in being greedy with respect to the rewards, and
the optimal policy is the one that controls the system toward
a desired region in the state space.

Bonuses. As multiplicative constants in the bonuses can
drastically change empirical performances, we unify the
bonus design across the different methods. Specifically, we
use the following bonuses in the empirical simulations:

β1 = c

√
H2

Nk
h (s, a)

, β2 = c

√
H2

k
+ cζL (17)

UCB-H and UCBVI use β1, and our method uses β2.
Nk

h (s, a) is the state-action visitation counter used by the

problem-agnostic methods. Further, as our goal is to study
qualitative behavior, we choose to optimize c by setting it
c = 0.05. This would accelerate the convergence of all al-
gorithms, especially UCB-H and UCBVI as their visitation
counter is distributed over the state-action pairs.

Results. In Figure 1, we plot the regret per episode (i.e.,
the suboptimality gap) for S = 25, A = {2, 4, 8}, H =
{5, 10}, W = 5, ζ = {0, 2, 4}, L = 0.25, and K ∈ [5000].
Each curve is an average of 50 simulations, and the shadings
represent a width of one standard deviation. Moreover, the
dashed lines represent the performance of the greedy policy
with respect to rewards. Because of our choice for rh, the
rewards-greedy policy is no better than the random policies
that the algorithms start with.

As we can see from Figure 1, Algorithm 1 always con-
verge to the optimal policy (when ζ = 0) or to a suboptimal
policy (when ζ > 0). Moreover, the time until convergence
is not affected by increasing the cardinalities of states and
actions. This is in contrast to UCB-H and UCBVI, where it
is evident from the figure that their convergence is affected
by S and A, as they take longer to outperform the case of
ζ > 0 when the cardinalities increase. Finally, we note that
the variance in the figure when ζ > 0 is not from within
run variations but is from the randomness of generating a
new MDP in each simulation. The code to reproduce these
results is publicly available5.

5https://github.com/meshal-h/ucb-f
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Discussion
In this section, we elaborate on some aspects of our algo-
rithm and methodology and discuss potential extensions of
our study.

Dependency on the Horizon. We believe that the scaling
with the horizon in our results is not optimal, and there is
an extra H factor that is an artifact of the analysis. Fur-
ther, sharpening the horizon dependency by a

√
H factor

is possible with a more elaborate bonus design that relies
on Bernstein inequality. Moreover, variance reduction tech-
niques were shown to yield another

√
H factor improvement

(Li et al. 2021b). We note that using these techniques usu-
ally adds lower-order terms to the regret (see, Table 1). As
our focus in this paper is on the dependency on S and A, we
leave applying these ideas to our algorithm as future direc-
tions.

Value Function Assumptions. As shown by Jiang (2018),
without further assumptions, no algorithm can always
achieve sample complexity independent of the number of
states and actions, even if it has access to a transition ker-
nel that is only corrupted at one state-action pair. We note
that our assumptions in Equation 9 only concern the optimal
value functions V ⋆

h (s), and no smoothness is required for
the value function generated by non-optimal policies. For
future analysis, we could consider more local regularity as-
sumptions on the optimal value function or adapt some of the
metrics used by the problem-dependent bounds discussed in
the literature review.

Noise in the Model. Not all noise structures in f̂ are
equivalent. In fact, some can be completely benign; The cur-
rent analysis suggests that if the approximate function differs
from the true function by a constant (i.e., f̂ = f + c for all
state-action pairs), then there is no linear term in the regret
when we use f̂ (owing to the cancellation of c that would
happen between Line 7 and 10 in Algorithm 1). This would
suggest that the use of ∥f̂ − f∥∞ in the analysis can be re-
fined, which will also provide relaxations to the conditions
required for the online estimator in Theorem 3.

Systems that Fit the Additive Disturbance Model. Per-
haps the simplest example is inventory control Sh+1 =
Sh + Ah −Wh, where Sh is the inventory level, Ah is the
amount of goods ordered, and Wh is the demand observed
after taking action Ah. In this model, the state can be nega-
tive to represent backlogged demand. We note that although
we restricted the states, actions, and disturbances to be posi-
tive, there is no loss of generality and our analysis extends to
the case where negative values are allowed. The additive dis-
turbance model in our study is flexible and captures systems
such as inventory control and many other similar problems
that arise in operations research. Further, as the additive dis-
turbance model is prevalent in control problems with con-
tinuous spaces, we discuss the implications of our results on
these systems in the following subsection.

Continuous Spaces. With the appropriate topological as-
sumptions, Algorithm 1 can be applied to continuous prob-

lems after discretization and inheriting the metric (to mea-
sure f − f̂ ) from the continuous space (see, e.g., Shah and
Xie (2018) for an example of Q-learning with discretiza-
tion). Our results would suggest that we will be able to learn
an optimal policy (up to ∆ discretization errors) when ζ = 0
in a number of samples that do not scale with state and ac-
tion cardinalities, which is O

(
1
∆2

)
in this case. A caveat

here is that computation will also scale with O
(

1
∆2

)
(cf.

Table 1). Still, one might be able to modify Algorithm 1
to make it more practical under sufficient smoothness con-
ditions. A more interesting line of future work is to see if
our methodology can be extended to the value function ap-
proximation setting, which is more appropriate in continu-
ous spaces.

Conclusion
In this paper, we studied the sample complexity of online RL
for systems that evolve according to an additive disturbance
model of the form Sh+1 = f(Sh, Ah) +Wh. We developed
an optimistic Q-learning algorithm that achieves

√
T regret

without dependency in S and A when f is known. Further,
if an asymptotically accurate online estimator for f exists,
we also achieve

√
T regret that depends only on the com-

plexity of learning f . Our methodology accomplishes all
of that without explicitly modeling transition probabilities,
and our algorithm enjoys the same memory complexity as
model-free methods. Future research directions include ex-
tending our algorithm and analysis to infinite horizon MDPs
and problems involving value function approximations.
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Properties of αi
t

We restate Lemma 1 to add other helpful properties for the proofs.
Lemma 1. The following properties hold for αi

t:

(1) 1
ta ≤

∑t
i=1

αi
t

ia ≤
1+ 1

H

ta for every t ≥ 1 and a ∈
[
1
2 , 1
]

(2) maxi∈[t] α
i
t ≤ 2H

t and
∑t

i=1(α
i
t)

2 ≤ 2H
t for every t ≥ 1

(3)
∑∞

t=i α
i
t = 1 + 1

H for every i ≥ 1

Proof. We prove (1) by induction over t. For the base case t = 1, the statement holds since:
t∑

i=1

αi
t

ia
= α1

1 = α1 = 1 ∈
[
1, 1 +

1

H

]
Now suppose that t ≥ 2. From Equation 11, we see that αi

t = αi
t−1(1− αt). Thus:

t∑
i=1

αi
t

ia
= (1− αt)

t−1∑
i=1

αi
t−1

ia
+

αt

ta

Then, assuming that 1
(t−1)a ≤

∑t−1
i=1

αi
t−1

ia ≤ 1+ 1
H

(t−1)a , we have:

(1− αt)

t−1∑
i=1

αi
t−1

ia
+

αt

ta
≥ 1− αt

(t− 1)a
+

αt

ta
≥ 1− αt

ta
+

αt

ta
=

1

ta

On the other hand, we have:

(1− αt)

t−1∑
i=1

αi
t−1

ia
+

αt

ta
≤

(1− αt)(1 +
1
H )

(t− 1)a
+

αt

ta
1

=
(t− 1)1−a(1 + 1

H )

H + t
+

H + 1

ta(H + t)

2

≤
t1−a(1 + 1

H )

H + t
+

H + 1

ta(H + t)
=

t+ t
H +H + H

H

ta(H + t)
=

1 + 1
H

ta

where 1 holds from the choice αt =
H+1
H+t and 2 holds since a ≤ 1. This concludes the induction. The proofs of (2) and (3)

are given in Appendix B in Jin et al. (2018).

Moreover, it is straightforward to show that for t = 0, we have α0
t = 1 and

∑t
i=1 α

i
t = 0. Further, for t ≥ 1, we have α0

t = 0

and
∑t

i=1 α
i
t = 1.

Sample Complexity Proofs when ζ > 0
Notations
Without loss of generality, we assume that we can write the noisy model as:

f̂(s, a) = f(s, a) + εs,a (18)

where |εs,a| ≤ ζ/2. Further, we define the following quantities:

εh,is,a =
(
f(s, a)− f̂(s, a)

)
−
(
f(sih, a

i
h)− f̂(sih, a

i
h)
)

(19)

= εs,a − εsh,ah

≤ ζ

We keep using (skh, a
k
h, w

k
h) to denote the realizations of variables and πk

h to denote the greedy policy with respect to Qk
h.

Further, we use c > 0 to denote an absolute constant and ι := log(SAH/p). On the other hand, we redefine the empirical
transition operator at step h of episode k to:

[P̂k
hV ](s, a) := V

(
f(s, a) + wk

h + εh,ks,a

)
(20)

With these notations, the decomposition of Qk
h −Q⋆

h for any (s, a, h, k) ∈ S ×A× [H]× [K] is given by:

(Qk
h−Q⋆

h)(s, a) = α0
t (H−Q⋆

h(s, a))+

t∑
i=1

αi
t

[
(V i

h+1 − V ⋆
h+1)(f(s, a) + wi

h + εh,is,a) +
[(

P̂i
h − Ph

)
V ⋆
h+1

]
(s, a) + bi

]
(21)
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Optimism
In the ζ > 0 setting, bonus design needs to guarantee that the estimates Qk

h are optimistic even with the errors εs,a. We establish
this formally in the following lemma.

Lemma 3. For any p ∈ (0, 1), letting bt = c
√

H3ι
t + Lζ, the following holds simultaneously for all (s, a, h, k) ∈ S × A ×

[H]× {2, . . . ,K} with at least 1− p probability:

0 ≤ (Qk
h −Q⋆

h)(s, a) ≤
t∑

i=1

αi
t(V

i
h+1 − V ⋆

h+1)(f(s, a) + wi
h + εh,is,a) + 2

(
1 +

1

H

)
bt

where t = k − 1.

Proof. To begin, let Fi be the σ-field generated by all the random variables until episode i. For any (s, a, h) ∈ S × A × [H],
we define for all i ∈ [K]:

Xi = V ⋆
h+1(f(s, a) + wi

h)− PhV
⋆
h+1(s, a)

Notice that Xi is a martingale difference sequence with respect to the filtration {Fi}i≥0. Moreover, we have |αt
iXi| ≤ αt

iH .
Thus, by Azuma-Hoeffding inequality, we have with probability at least 1− p

SAH :∣∣∣∣∣
t∑

i=1

αt
iXi

∣∣∣∣∣ ≤ cH

2

√√√√ι

t∑
i=1

(αt
i)

2 ≤ c

√
H3ι

t

The second inequality follows from Lemma 1.2. Then, using a union bound on s, a, and h, we see that the following holds
simultaneously for all (s, a, h, k) ∈ S ×A× [H]× {2, . . . ,K} with at least 1− p probability:∣∣∣∣∣

t∑
i=1

αi
t

[
V ⋆
h+1(f(s, a) + wi

h)− PhV
⋆
h+1(s, a)

]∣∣∣∣∣ ≤ c

√
H3ι

t
(22)

Now, we choose bt = c
√

H3ι
t + Lζ, which satisfies the following:

t∑
i=1

αi
tbi

1

= c
√
H3ι

t∑
i=1

αi
t√
i
+ Lζ

2

≤
(
1 +

1

H

)(
c

√
H3ι

t
+ Lζ

)
=

(
1 +

1

H

)
bt (23)

1 follows because
∑t

i=1 α
i
t = 1 and 2 from Lemma 1.1. Similarly:

t∑
i=1

αi
tbi ≥

(
c

√
H3ι

t
+ Lζ

)
= bt (24)

Further, we can show that:

t∑
i=1

αi
t

[(
P̂i
h − Ph

)
V ⋆
h+1

]
(s, a)

1

=

t∑
i=1

αi
tV

⋆
h+1

(
f(s, a) + wi

h + εh,is,a

)
− PhV

⋆
h+1(s, a)

2

≤
t∑

i=1

αi
tV

⋆
h+1

(
f(s, a) + wi

h

)
− PhV

⋆
h+1(s, a) +

t∑
i=1

αi
tL|εh,is,a|

3

≤ c

√
H3ι

t
+ Lζ = bt (25)

where 1 holds from the definition of P̂i
h in Equation 20, 2 from the Lipschitz assumption in Equation 9, and 3 holds with high

probability from Equation 22. Similarly, we can establish the following lower bound:

t∑
i=1

αi
t

[(
P̂i
h − Ph

)
V ⋆
h+1

]
(s, a) ≥ −c

√
H3ι

t
− Lζ = −bt (26)
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Then, starting from Equation 21, we establish the right-hand side of the lemma by using the bounds in Equations 23 and 25.
For any (s, a, h, k) ∈ S ×A× [H]× {2, . . . ,K}, we have:

(Qk
h −Q⋆

h)(s, a) =

t∑
i=1

αi
t

[
(V i

h+1 − V ⋆
h+1)(f(s, a) + wi

h + εh,is,a) +
[(

P̂i
h − Ph

)
V ⋆
h+1

]
(s, a) + bi

]
≤

t∑
i=1

αi
t(V

i
h+1 − V ⋆

h+1)(f(s, a) + wi
h + εh,is,a) + bt +

(
1 +

1

H

)
bt

≤
t∑

i=1

αi
t(V

i
h+1 − V ⋆

h+1)(f(s, a) + wi
h + εh,is,a) + 2

(
1 +

1

H

)
bt

Now, we proof the left-hand side of the lemma. First, let xh,i
s,a = f(s, a)+wi

h+εh,is,a. Starting from Equation 21, we can show
that for any (s, a, k) ∈ S ×A× {2, . . . ,K} and h = H:

(Qk
H −Q⋆

H)(s, a) =

t∑
i=1

αi
t

[
(V i

H+1 − V ⋆
H+1)(x

H,i
s,a ) +

[(
P̂i
H − PH

)
V ⋆
H+1

]
(s, a) + bi

]
≥

t∑
i=1

αi
tbi ≥ 0

where we used the fact that the value functions at H +1 are zero. Then, assuming (Qk
h+1 −Q⋆

h+1)(s, a) ≥ 0 for all (s, a, k) ∈
S ×A× {2, . . . ,K}, we have for any h < H:

(Qk
h −Q⋆

h)(s, a) =

t∑
i=1

αi
t

[
(V i

h+1 − V ⋆
h+1)(x

h,i
s,a) +

[(
P̂i
h − Ph

)
V ⋆
h+1

]
(s, a) + bi

]
≥

t∑
i=1

αi
t(V

i
h+1 − V ⋆

h+1)(x
h,i
s,a) +

t∑
i=1

αi
t

( [(
P̂i
h − Ph

)
V ⋆
h+1

]
(s, a) + bi

)
=

t∑
i=1

αi
t

(
min

{
H, maxQi

h+1(x
h,i
s,a, ·)

}
− V ⋆

h+1(x
h,i
s,a)
)
+

t∑
i=1

αi
t

( [(
P̂i
h − Ph

)
V ⋆
h+1

]
(s, a) + bi

)
(27)

≥ 0

To see why the first term in Equation 27 is positive, let yh,is,a = argmaxa Q
⋆
h+1(x

h,i
s,a, a), then for all i ∈ [K]:

V ⋆
h+1(x

h,i
s,a) = Q⋆

h+1(x
h,i
s,a, y

h,i
s,a)

1

≤ Qi
h+1(x

h,i
s,a, y

h,i
s,a) ≤ maxQi

h+1(x
h,i
s,a, ·)

where in 1 , we used the recursion assumption (Qi
h+1 −Q⋆

h+1)(s, a) ≥ 0. The second term in Equation 27 is positive from the
bonus design (cf. Equations 24 and 26).

Convergence of On-Policy Errors
With Lemma 1 and Lemma 3 at hand, we are ready to establish the main lemma that shows Q-values convergence.

Lemma 4. Let {P t
h}

H

h=1 be a sequence that satisfy the following recursive relationship:

P t
h = 4

(
1 +

1

H

)(
c
√
H3ι+ Lζ

√
t
)
+

(
1 +

1

H

)
P t
h+1

where P t
H+1 := 0. Then, for any p ∈ (0, 1), letting letting bt = c

√
H3ι
t + Lζ, the following holds simultaneously for all

(s, h, k) ∈ S × [H]× {2, . . . ,K} with at least 1− p probability:

0 ≤ (V k
h − V ⋆

h )(s) ≤ (Qk
h −Q⋆

h)(s, π
k
h(s)) ≤

P t
h√
t

where t = k − 1.

11



Proof. To start, we have:

(V k
h − V ⋆

h )(s)
1

≤ (Qk
h −Q⋆

h)(s, π
k
h(s))

2

≤
t∑

i=1

αi
t(V

i
h+1 − V ⋆

h+1)(f(s, π
k
h(s)) + wi

h + εh,is,a) + 2

(
1 +

1

H

)
bt

≤ α1
tH +

t∑
i=2

αi
t(V

i
h+1 − V ⋆

h+1)(f(s, π
k
h(s)) + wi

h + εh,is,a) + 2

(
1 +

1

H

)
bt (28)

1 holds as V k
h (s) ≤ maxQk

h(s, ·) = Qk
h(s, π

k
h(s)) and V ⋆

h (s) = maxa′∈A Q⋆
h(s, a

′) ≥ Q⋆
h(s, π

k
h(s)) while 2 holds from

Lemma 3. Now, we need to argue that the error due to the initialization α1
tH decays fast enough. To that end, we can show

from Equation 11:

α1
t = α1

t∏
j=2

(1− αj) =

t∏
j=2

j − 1

H + j
≤

t∏
j=2

j − 1

j
=

1

t

which implies that α1
tH ≤ H

t ≤ 2
(
1 + 1

H

)
bt for any nontrivial MDP. Thus, we have:

(28) ≤
t∑

i=2

αi
t(V

i
h+1 − V ⋆

h+1)(f(s, π
k
h(s)) + wi

h + εh,is,a) + 4

(
1 +

1

H

)
bt

=

t∑
i=2

αi
t(V

i
h+1 − V ⋆

h+1)(f(s, π
k
h(s)) + wi

h + εh,is,a) + 4

(
1 +

1

H

)(
c

√
H3ι

t
+ Lζ

)
(29)

We complete the proof by induction. For the base case h = H , we have for any (s, h, k) ∈ S × [H]× {2, . . . ,K}:

(V k
H − V ⋆

H)(s) ≤ (Qk
H −Q⋆

H)(s, πk
H(s)) ≤ 4

(
1 +

1

H

)(
c

√
H3ι

t
+ Lζ

)
=

P t
H√
t

Then, assuming that (V k
h+1 − V ⋆

h+1)(s) ≤ (Qk
h+1 −Q⋆

h+1)(s, π
k
h+1(s)) ≤

P t
h+1√
t

, we have for any h < H:

(V k
h − V ⋆

h )(s) ≤ (Qk
h −Q⋆

h)(s, π
k
h(s)) ≤

t∑
i=2

αi
t(V

i
h+1 − V ⋆

h+1)(f(s, π
k
h(s)) + wi

h + εh,is,a) + 4

(
1 +

1

H

)(
c

√
H3ι

t
+ Lζ

)
1

≤
t∑

i=2

αi
tP

i
h+1√
i

+ 4

(
1 +

1

H

)(
c

√
H3ι

t
+ Lζ

)
2

≤
t∑

i=1

αi
tP

i
h+1√
i

+ 4

(
1 +

1

H

)(
c

√
H3ι

t
+ Lζ

)
3

≤
(
1 +

1

H

)
P t
h+1√
t

+ 4

(
1 +

1

H

)(
c

√
H3ι

t
+ Lζ

)
4

=
P t
h√
t

where 1 holds from the recursion assumption, 2 as α1
tPh+1 is positive, 3 from Lemma 1.1, and 4 by definition. This concludes

the proof of the right-hand side of the lemma. The left-hand side follows directly from Lemma 3 as Qk
h ≥ Q⋆

h, and thus
V k
h ≥ V ⋆

h .

With simple recursion, one can show that the elements of the sequence {P t
h}

H

h=1 are bounded:

P t
h ≤ 4(1 +H − h)

(
c
√
H3ι+ Lζ

√
t
)(

1 +
1

H

)1+H−h

(30)
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Proof of Theorems 1, 2, and 3
Finally, we are ready to bound the suboptimality gap (V ⋆

h − V πk

h ). For any (s, h, k) ∈ S × [H]× {2, . . . ,K}, we have with at
least 1− p probability:(

V ⋆
h − V πk

h

)
(s)

1

≤
(
V k
h − V πk

h

)
(s)

2

≤ (Qk
h −Qπk

h )(s, πk
h(s)) = (Qk

h −Q⋆
h)(s, π

k
h(s)) + (Q⋆

h −Qπk

h )(s, πk
h(s))

3

=
(
Qk

h −Q⋆
h

)
(s, πk

h(s)) + Ph

(
V ⋆
h+1 − V πk

h+1

)
(s, πk

h(s))

4

≤
P k−1
h√
k − 1

+ Ph

(
V ⋆
h+1 − V πk

h+1

)
(s, πk

h(s)) (31)

where 1 holds as V k
h ≥ V ⋆

h , 2 as V k
h (s) ≤ maxQk

h(s, ·) = Qk
h(s, π

k
h(s)) and V πk

h (s) = Qπk

h (s, πk
h(s)), 3 from Bellman

Equations 4, and 4 from Lemma 4. Then, we continue by recursion. For the base case h = H , we have for any (s, k) ∈
S × {2, . . . ,K}: (

V ⋆
H − V πk

H

)
(s) ≤

P k−1
h√
k − 1

=

H∑
h′=H

P k−1
h′√
k − 1

Then, assuming
(
V ⋆
h+1 − V πk

h+1

)
(s) ≤

∑H
h′=h+1

Pk−1

h′√
k−1

, we can show that:(
V ⋆
h − V πk

h

)
(s) ≤

P k−1
h√
k − 1

+ (V ⋆
h+1 − V πk

h+1

)⊤Ph(·|s, πk
h(s))

1

≤
P k−1
h√
k − 1

+

(
H∑

h′=h+1

P k−1
h′√
k − 1

)
1⊤Ph(·|s, πk

h(s))

2

=
P k−1
h√
k − 1

+

H∑
h′=h+1

P k−1
h′√
k − 1

=

H∑
h′=h

P k−1
h′√
k − 1

where 1 follows as the recursion assumption holds for all s ∈ S and 2 holds as Ph(·|s, πk
h(s)) is a probability vector. Thus,

we have with probability at least 1− p:(
V ⋆
1 − V πk

1

)
(s) ≤

H∑
h=1

P k−1
h√
k − 1

1

≤ O

(√
H7ι

k − 1
+ LζH2

)
where 1 follows from the upper bounds in Equation 30. This establishes the claims in Theorem 2.

For the claims in Theorem 1, we have:
K∑

k=1

(
V ⋆
1 − V πk

1

)
(sk1) ≤ H +

K∑
k=2

H∑
h=1

P k−1
h√
k − 1

1

≤ H + 8LζH2K + 8c
√
H7

K∑
k=2

√
1

k − 1

2

≤ H + 8LζH2K + 8c
√
H7K

√√√√K−1∑
k=1

1

k

3

≤ H + 8LζH2K + 8c
√
2ιH7K logK

≤ O
(√

H7Kι logK + LζH2K
)

1 holds from Equation 30, 2 from Jensen’s inequality, and 3 from the bound on the Harmonic series
∑N

n=1
1
n ≤ log2(N +1).

For Theorem 3, if we choose the bonuses such that:

bt = c

√
H3ι

t
+ L

√
d

t
(32)

Then, we can use the same augments presented here without any further complications and the proof follows immediately.
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