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Abstract. In this project, we study some of the numerical methods of the identification of linear
time-invariant (LTI) systems. LTI systems play an important role in many engineering disciplines
as many systems are linear or can be approximated effectively by linear dynamics. The process of
retrieving the structure of dynamical systems from observable data is known as system identification,
and a popular algorithm for that is the eigensystem realization algorithm (ERA). We study a variant
of ERA that uses randomized matrix decomposition approaches to improve numerical efficiency.
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1. Introduction. System identification is the process of recovering the structure
of dynamical systems from observed and possibly noisy data [15]. The problem might
be limited to identifying the input-output relationships for specific inputs of interest,
or the full underlying dynamical model might be desired [4]. Due to its applicability in
various engineering problems, system identification has garnered a vast and extensive
body of literature. This project focuses on the identification of linear time-invariant
(LTI) discrete-time systems.

The identification of LTI systems adheres to well-established principles from con-
trol and system theories, see [14, 16] and the references within. Many of the numerical
methods for system identification rely on a low-rank approximation of the Hankel ma-
trices assembled from observed data [9, 5]. A particular algorithm of interest is the
eigensystem realization algorithm (ERA), which requires a singular value decompo-
sition (SVD) of Hankel matrices [10]. Because of its simplicity and proven stability,
ERA has seen widespread adaptation in many engineering disciplines.

Given that the size of Hankel matrices for many realistic applications can be in the
order of R10000×10000 or more, the factorization of such matrices is computationally
expensive. Recently, many variations of the ERA have been proposed to address the
computational cost of factorizing large Hankel matrices [11]. In particular, random-
ized approaches for matrix decomposition have been used to reduce the computation
complexity of ERA by orders of magnitude [13]. This project aims to study the nu-
merical properties of these methods and compare them with the original ERA.

The remainder of this report is organized as follows. Section 2 provides the neces-
sary background about LTI systems and introduces the ERA. Section 3 presents the
the modifications introduced to ERA to enhance its efficiency. Section 4 analytically
compares between the studied ERA variants. Section 5 describes the datasets, the
experimentation, and the numerical results. Finally, Section 6 presents the conclu-
sions of this report.

2. Background. A LTI discrete-time system with order n, m inputs, and l
outputs is governed by the following state-space representation:

xk+1 = Axk +Buk

yk = Cxk +Duk

(2.1)
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where xk ∈ Rn is the state vector, uk ∈ Rm is the input vector, and yk ∈ Rl is the
output vector at sampling time k. The matrixA ∈ Rn×n is known as the state matrix,
B ∈ Rn×m is the input matrix, C ∈ Rl×n is the output matrix, and D ∈ Rl×m is the
input-output matrix.

The goal of system identification to to estimate the matrices (A,B,C,D) up to a
similarity transformation (TAT−1,TB,CT−1,D). Note that the inevitable matrix
T ∈ Rn×n does not change the relationship between {uk} and {yk}. Moreover, if we
assume that the system starts from initial state x0 = 0, then the outputs {yk} can
be characterized by an equation known as the external description of the system:

(2.2) yk =

k∑
j=0

hjuk−j , k = 0, 1, . . .

where the matrices hk ∈ Rl×m are called Markov parameters and are described by:

(2.3) hk =

®
D, k = 0

CAk−1B, k = 1, 2, . . . , 2s− 1

Markov parameters can be estimated by exciting the system with a series of
impulse responses, or they can be obtained from general input-output data [6]. Note
that D is immediately available from h0. Thus, the identification task will focus on
recovering the remaining matrices (A,B,C).

ERA requires that Markov parameters {hk} are available, and use them to form
a block Hankel matrix as follows:

Hs =


h1 h2 · · · hs

h2 h3 · · · hs+1

...
... . .

. ...
hs hs+1 · · · h2s−1



=


CB CAB · · · CAs−1B
CAB CA2B · · · CAsB

...
... . .

. ...
CAs−1B CAsB · · · CA2s−2B


(2.4)

Therefore, Hs ∈ Rsl×sm. Under the standard observability and controllability as-
sumptions [1], it is known that this block Hankel matrix can be factorized into:

(2.5) Hs = OC =


C
CA
...

CA(s−1)

 [
B AB · · · As−1B

]
where O and C are the observability and controllability matrices, respectively. Note
that if observability matrix O is available, one can form a least-square problem for
recovering A as follows:

(2.6)


C
CA
...

CA(s−2)

A =


CA
CA2

...
CA(s−1)


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Algorithm 2.1 Eigensystem Realization (ERA)

Inputs: Markov parameters {hk}, target rank 1 ≤ r ≤ n
Outputs: reduced system matrices Ar,Br,Cr

1: Form block Hankel matrix Hs from {hk} using (2.4)
2: Compute truncated SVD factorization Hs ≈ UrΣrV

T
r

3: Partition Ur =
î
Υ

(r)
f ∗

óT
=
î
∗ Υ

(r)
l

óT
s.t. Υ

(r)
f ,Υ

(r)
l ∈ R(s−1)l×r

4: Compute Ar = [Υ
(r)
f ]†Υ

(r)
l

5: Compute Br = ΣrV
T
r

[
Im 0

]T
6: Compute Cr =

[
Il 0

]
Ur

7: return Ar,Br,Cr

Notice that except for A, all other matrices are known (i.e., they can be obtained by
slicing O). ERA uses this fact, combined with the SVD of Hs to estimate O, for
reduced-order system identification as described in Algorithm 2.1. From here onward,
we refer to the ERA that uses the vanilla SVD by SVD-ERA.

3. Efficient ERA. As discussed briefly in Section 1, the size of Hankel matrices
for many realistic applications is very large. More concretely, in practice m and l are
usually in O(10− 100) while the number of samples s is O(103 − 105). This will give
rise to Hankel matrices with dimensions O(104 − 107), making the SVD factorization
in ERA computationally prohibitive.

Luckily, as can be seen from (2.4), the block Hankel matrix Hs is very structured;
Thus, one might hope that its singular value decays quickly, which would facilitate
randomized approaches to reduce the complexity of SVD factorization in ERA. The
authors in [13] utilized this fact and used the procedure described in Algorithm 3.1
for randomized SVD factorization.

The algorithm starts by generating a random Gaussian matrix Ω to be used to
approximate the action of the matrix X to be factorized. In particular, lines 2-6
describe a procedure for q+1 subspace iteration with orthogonalization between each
iteration. This procedure is also known as normalized power iterations, which improve
the floating-point numerical stability in the case of large matrices [12]. Finally, the
matrix X is projected into a smaller subspace where we perform a vanilla SVD de-
composition. Note that for a given target rank r, the projection is made into a larger
rank (r + ρ) where ρ ≤ 20 is the oversampling parameter. Oversampling is known
to exponentially reduce the probability of failure in capturing the optimal reduced
subspace (i.e., failure has probability O(ρ−ρ) [8]).

Note that we can improve the efficiency of ERA further by not forming the block
Hankel matrix Hs explicitly and instead rely on Markov parameters {hk} for matrix-
vector and matrix-matrix products. This can be achieved as block Hankel matrix can
be viewed as special cases of circulant matrices where a fast matrix-vector product
can be obtained by using fast Fourier transforms (FFT) [7]. We do not pursue such
modifications in this project as the major gains are in terms of memory complexity,
and they are mostly significant in the cases of very massive Hankel matrices.

The outputs of Algorithm 3.1 can be used to replace line 2 in Algorithm 2.1 to
achieve a more efficient ERA. From here onward, we refer to the algorithm that uses
RandSVD in combination with ERA for system identification by RandSVD-ERA and
it will be our main algorithm of interest in this project.
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Algorithm 3.1 RandSVD

Inputs: matrix X ∈ RM×N , target rank r, oversampling parameter ρ such that
r + ρ ≤ min{M,N}, number of subspace iterations q ≥ 0

Outputs: truncated approximate factorization X ≈ ÛrΣ̂rV̂
T
r

1: Draw standard Gaussian random matrix Ω ∈ RN×(r+ρ)

2: Form Y0 = XΩ and compute its QR factorization Y0 = Q0R0

3: for j = 1, 2, ..., q do
4: Form Ỹj = X∗Qj−1 and compute its QR factorization Ỹj = Q̃jR̃j

5: Form Yj = XQ̃j and compute its QR factorization Yj = QjRj

6: end for
7: Form B = Q∗

qX

8: Calculate SVD B = UBΣBV
T
B

9: Set Ûr = QqUB(:, 1 : r), Σ̂r = ΣB(1 : r, 1 : r), and V̂r = VB(:, 1 : r)

10: return Ûr, Σ̂r, V̂
T
r

4. Analytical Comparison. In this section, we compare between SVD-ERA
and RandSVD-ERA in term of their asymptotic number of operations, numerical
accuracy, and stability.

4.1. Computational Cost. Given that the SVD calculation dominates the
computations for both SVD-ERA and RandSVD-ERA, we mainly compare the two
algorithms in terms of the asymptotic number of operations required to obtain the
SVD factorization. For a general dense matrix in RM×N , it is known that SVD
factorization requires O(MN min {M,N}). Thus, asymptotic cost of SVD-ERA is:

(4.1) Cost SVD-ERA = O(s3lmmin {l,m})

On the other hand, the cost of randomized SVD factorization consists of two
parts: the cost of subspace iterations and the cost of the deterministic SVD. Let Tmul

be the cost of matrix-matrix product, then for a dense matrix in RM×N withM ≥ N ,
one can show that the cost of randomized SVD is [13]:

(4.2) Cost RandSVD = (2q + 1)(r + ρ)Tmul +O(r2(M +N))

Then, for RandSVD-ERA, the asymptotic cost is given by:

(4.3) Cost RandSVD-ERA = O(rs2lm+ r2s(l +m))

Note that the cost does not depend on q is it is a constant that does not scale with
the problem size. In practice, s≫ r, l, or m. Thus, RandSVD-ERA achieve an order
of magnitude improvement in asymptotic cost over SVD-ERA.

4.2. Error Analysis. The error bounds for randomized algorithms are well
studied in the literature; see [8] for a formal treatment of the subject. Thus, this
section will focus on how errors in SVD factorization induce errors in the subsequent
system identification step.

Given that system identification is achieved up to a similarity transform, the main
notion of accuracy we study is in term of the eigenvalues of state matrix Ar. Let Ar,
and Âr be the matrices recovered by SVD-ERA and RandSVD-ERA, respectively. If
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ψ(·) donate the spectrum of a matrix, then the spectral variation between between

Ar and Âr is defined as [3]:

(4.4) SV
Ä
ψ(Ar), ψ(Âr)

ä
= max

1≤j≤n
min

1≤i≤n

∣∣∣λi(Ar)− λj(Âr)
∣∣∣

LetR(Ur) andR(Ûr) be the column spaces generated by SVD-ERA and RandSVD-

ERA. Then, the spectral variation between Ar and Âr is bounded by:

(4.5) SV
Ä
ψ(Ar), ψ(Âr)

ä
≤ κ(W )η

Ñ
1 +

√
2
∥∥∥[Υ(r)

f ]†
∥∥∥
2

1− η

é
(4.6) η = 2 sin θmax

∥∥∥[Υ(r)
f ]†

∥∥∥
2

where W is the left eigenvectors of Ar, κ(·) is the condition number, and η < 1
is a factor that depends on the maximum canonical angel θmax between R(Ur) and

R(Ûr). See [13] for a detailed proof.

There are multiple factors that affect the bound in (4.5); The dependence on

the condition number of W and the norm of pseudoinverse of Υ
(r)
f capture natural

sensitively in original linear system and the ERA’s least-square fitting, respectively.
On the other hand, η arises from the mismatch between the optimal column space
R(Ur) and the approximate column space R(Ûr).

4.3. Stability. Compared to SVD-ERA, RandSVD-ERA mainly requires addi-
tional QR factorizations, which can be done using unitary transformations that do
not affect the numerical stability. It is equally important to discuss the stability of
the dynamical systems identified by SVD-ERA and RandSVD-ERA.

We say that a LTI system is stable of spectral radius of its eigenvalues ρ(Ar) < 1.
For SVD-ERA, the observability and controllability assumptions grantee such notion
of stability [1]. From (4.5), we see that RandSVD-ERA can shift the eigenvalues

outside the unit circle; Thus, for Âr to be stable, RandSVD-ERA must achieve:

(4.7) κ(W )η

Ñ
1 +

√
2
∥∥∥[Υ(r)

f ]†
∥∥∥
2

1− η

é
< 1− ρ(Ar)

This introduce an upper bound on η and the allowable discrepancy between the sub-
spaces R(Ur) and R(Ûr).

5. Numerical Experiment. We now compare SVD-ERA and RandSVD-ERA
through a numerical example. Both algorithms have been implemented using Julia
and its Standard Library. The experiments have done on a computer with an AMD
Ryzen 9 5900HX CPU and 16GB of DDR4 RAM.

5.1. Dataset. We use a dataset that is part of Oberwolfach Benchmark Collec-
tion, which is a stable benchmark for model order reduction and system identification
techniques. In particular, the dataset is generated from ordinary differential equations
for a heat transfer problem in steel profiles. See [2] for data creation details.
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Fig. 1. Timing comparison between SVD-ERA and RandSVD-ERA for multiple values of s.
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Fig. 2. Singular values of Hs and Ĥs.
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Fig. 3. Eigenvalues of Ar and Âr.

As the heat transfer dataset describe a continuous time problem, we used the c2d
function from ControlSystems library to convert the problem to discrete time. The
problem has l = 6 inputs and m = 7 outputs, while the number of samples s can be
chosen freely. We fix the reduced model order r = 20 on all the results shown.

5.2. Timing and Memory. To test the computational complexity of the two
algorithms, we varied the number of samples s from 50 to 2000. This resulted in a
matrix in the largest case of size R12000×14000.

Figure 1 shows the timing each method spent in the calculation of the SVD
factorization. We used Julia macro @btime from BenchmarkTools library to produce
theses results. As predicted by the analysis in Section 4, RandSVD-ERA offers an
order of magnitude improvement in computation times when compared to SVD-ERA.

Memory requirement (measured using allocated memory from @btime) has shown
similar trends; For example, for the case of s = 2000, SVD-ERA used 6.80 GiB of
RAM while RandSVD-ERA only used 78.65 MiB.

5.3. Accuracy. We now discuss the accuracy of RandSVD-ERA when compared
to SVD-ERA. We have chosen q = 1 as the number of subspace iterations. Figure 2
shows the singular values of Hankel matrices generated from the two SVD-ERA and
RandSVD-ERA. We can notice that the singular values of the Hankel matrices decay
quickly and there is a good agreement between the two algorithms.
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Fig. 4. Relative errors in the Markov parameters of RandSVD-ERA for multiple values of q.

Figure 3 shows the eigenvalues of the recovered state matrices Ar and Âr. In-
specting the figure, we can see that RandSVD-ERA where able to recover accurate
state matrix Âr in term of its eigenvalues. A more quantitative result is in term of
the spectral variation as defined in 4.4, which we measured to be:

SV
Ä
ψ(Ar), ψ(Âr)

ä
≈ 2.9720× 10−13

To investigate the effects of the number of subspace iterations q, we study the
accuracy of the Markov parameters generated by RandSVD-ERA when compared to
SVD-ERA. We define this accuracy in term of norm of relative errors as:

(5.1) Ek =

∥∥∥CrA
k
rBr − ĈrÂ

k
rB̂r

∥∥∥
2

∥CrAk
rBr∥2

, k = 1, 2, . . . , 2s− 1

Figure 4 shows this relative error for the cases of q = 0 and q = 1. We can notice
that multiple subspace iterations (i.e., q = 1) leads to smaller relative errors which is
in the order of 10−11. We also tested values q > 1 and noticed that the errors do not
improve further.

Additionally, from Figure 4, we can see an increasing trend in errors as the sample
index k increases. This can be attributed to the recursive manner in the definition
of the Markov parameters (Equation 2.3), which can lead to a compounding of the
errors as the sample index k increases.

6. Conclusion. In this project, we studied the numerical properties of the eigen-
system realization algorithm and some of its recent variants. In particular, we consid-
ered a variant called RandSVD-ERA that utilizes randomized techniques to deal with
the SVD factorization of large block Hankel matrices. When compared to the original
SVD-ERA, RandSVD-ERA exhibits appealing properties as its computational com-
plexity is an order of magnitude lower. Additionally, we investigated the accuracy of
RandSVD-ERA theoretically and empirically. We showed that both of the eigenvalues
and Markov parameters recovered by RandSVD-ERA are accurate up to O(10−12)
when compared to the ones recovered by SVD-ERA.

Nonetheless, there are cases where one might prefer SVD-ERA over RandSVD-
ERA. In particular, if Ar is ill-conditioned and its spectral radius ρ(Ar) is very close to
one. In these cases, the bound shown in Equation 4.5 might not hold, and RandSVD-
ERA is not guaranteed to recover a stable dynamical system. Other cases include
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contexts where the recovered system will be used to simulate very long trajectories.
In this setting, the increasing error trend of Markov parameters of RandSVD-ERA
might be undesirable.

As discussed briefly in Section 3, further improvements over RandSVD-ERA in-
clude utilizing the block Hankel structure for efficient matrix-vector products. Doing
this has the potential of reducing the dependency on s in the computational com-
plexity of RandSVD-ERA from O(s2) to O(s log(s)). It will also have more drastic
impacts on memory requirements as the entire Hankel matrix does not need to be
formed.
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